Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High sensitive scheme for methane remote sensor based on tunable diode laser absorption spectroscopy

Ding Wu-Wen Sun Li-Qun Yi Lu-Ying

Citation:

High sensitive scheme for methane remote sensor based on tunable diode laser absorption spectroscopy

Ding Wu-Wen, Sun Li-Qun, Yi Lu-Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Methane is an important raw material for various petrochemicals in industrial fields and as also a clean fuel in daily life. However, as an inflammable and explosive material, methane leak can lead to disastrous consequences such as fire and explosion. Furthermore, as a kind of greenhouse gas, methane has stronger influence on global warming than carbon dioxide. In this paper, we present a new high sensitive scheme for methane remote sensing, which can facilitate detection and location of methane leakage. And the 2v3 band (near 1653.7 nm) of methane is chosen as the target transition which is free from the absorption of the other molecule in atmosphere. A tunable distributed-feedback diode laser is adapted to scan across the target transition. A Fresnel lens with a diameter of 150 mm is employed to collect the ambient backscattering light from natural features such as the buildings. The first harmonic signal is used to normalize the second harmonic signal to remove the influence introduced by the unknown reflectance factor of the actual target, therefore no retro-reflector is needed. Traditional tunable diode laser absorption spectroscopy (TDLAS) method has difficulty in locating the second harmonic signal peak position in low concentration conditions because of low signal-noise-ratio (SNR). To improve the SNR especially in low concentration environment, a scheme named baseline-offset TDLAS is presented in the paper, in which a reference cell filled with standard methane sample is inserted into the measuring optical path. The reference cell can also be used to calibrate the sensor. Furthermore, the reference cell can be used to lock the central frequency of the diode laser to the absorption peak position to monitor concentration fluctuation continuously. In the peak-locking mode, the sensor demodulates the third harmonic signal as error signal to control the injection current of the laser source with PID control. Moreover, one advantage of peak-locking mode is that the measurement frequency is about two orders of magnitude higher than the traditional TDLAS method. With baseline-offset TDLAS, the remote sensor described in this paper obtains SNRs as high as 19 and 16 at a stand-off distance of 10 m and 20 m, respectively. With such a high SNR, there is no necessity for complex algorithm in absorption peak position location. By defining the standard deviation of the measuring concentration as the detection limit, experimental results show that the proposed methane remote sensor has detection limits of 5 ppm m at a distance of 10 m and 16 ppmm for 20 m, respectively, while measuring the ambient methane. In peak-locked mode, the experimental system has a detection limit of 22 ppmm at a distance up to 37 m and can monitor rapid concentration fluctuation in.
      Corresponding author: Sun Li-Qun, sunlq@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Major Scientific Instrument and Equipment Development Project of China (Grant Nos. 2012YQ200182, 2012YQ0901670602).
    [1]

    Fukada S, Nakamura N, Monden J 2004 Int. J. Hydrogen Energ. 29 619

    [2]

    Fincke J R, Anderson R P, Hyde T, Detering B A, Wright R, Bewley R L, Haggard D C, Swank W D 2002 Plasma Chem. Plasma P. 22 105

    [3]

    Mer J L, Roger P 2001 Eur. J. Soil. Biol. 37 25

    [4]

    Iseki T, Tai H, Kimura K 2000 Meas. Sci. Technol. 11 594

    [5]

    Zhang S, Liu W Q, Zhang Y J, Ruan J, Kan R F, You K, Yu D Q, Dong J T, Han X L 2012 Acta Phys. Sin. 61 050701 (in Chinese) [张帅, 刘文清, 张玉钧, 阮俊, 阚瑞峰, 尤坤, 于殿强, 董金婷, 韩小磊 2012 物理学报 61 050701]

    [6]

    Wainner R, Green B, Allen M G, White M, Stafford-Evans J, Naper R 2002 Appl. Phys. B 75 249

    [7]

    Goldenstein C S, Mitchell Spearrin R, Hanson R K 2016 Appl. Opt. 55 479

    [8]

    Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 物理学报 54 1927]

    [9]

    Xia H H, Kan R F, Liu J G, Xu Z Y, He Y B 2016 Chin. Phys. B 25 064205

    [10]

    Rieker G B, Jeffries J B, Hanson R K, Mathur T, Gruber M R, Carter C D 2009 Proc. Combst. Inst. 32 831

    [11]

    Huang Q B, Xu X M, Li C J, Ding Y P, Cao C, Yin L Z, Ding J F 2016 Chin. Phys. B 25 114202

    [12]

    Chakraborty A L, Ruxton K, Johnstone W, Lengden M, Duffin K 2009 Opt. Express 17 9602

    [13]

    Nadezhdinskii A, Berezin A, Chernin S, Ershov O, Kutnyak V 1999 Spectrochim. Acta A 55 2083

    [14]

    Reid J, Labrie D 1981 Appl. Phys. B 26 203

    [15]

    Duffin K, McGettrick A J, Johnstone W, Stewart G, Moodie D G 2007 J. Lightwave Technol. 25 3114

    [16]

    Fernholz T, Teichert H, Ebert V 2002 Appl. Phys. B 75 229

    [17]

    Cao Y N, Wang G S, Tan T, Wang L, Mei J X, Cai T D, Gao X M 2016 Acta Phys. Sin. 65 084202 (in Chinese) [曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明 2016 物理学报 65 084202]

    [18]

    Kluczynski P, Axner O 1999 Appl. Opt. 38 5803

    [19]

    Rothman L S, Gordon I E, Babikov Y 2013 J. Quant. Spectrosc. Ra. 130 4

    [20]

    Werle P W, Mazzinghi P, D'Amato F, Rosa M D, Maurer K, Slemr F 2004 Spectrochim. Acta A 60 1685

  • [1]

    Fukada S, Nakamura N, Monden J 2004 Int. J. Hydrogen Energ. 29 619

    [2]

    Fincke J R, Anderson R P, Hyde T, Detering B A, Wright R, Bewley R L, Haggard D C, Swank W D 2002 Plasma Chem. Plasma P. 22 105

    [3]

    Mer J L, Roger P 2001 Eur. J. Soil. Biol. 37 25

    [4]

    Iseki T, Tai H, Kimura K 2000 Meas. Sci. Technol. 11 594

    [5]

    Zhang S, Liu W Q, Zhang Y J, Ruan J, Kan R F, You K, Yu D Q, Dong J T, Han X L 2012 Acta Phys. Sin. 61 050701 (in Chinese) [张帅, 刘文清, 张玉钧, 阮俊, 阚瑞峰, 尤坤, 于殿强, 董金婷, 韩小磊 2012 物理学报 61 050701]

    [6]

    Wainner R, Green B, Allen M G, White M, Stafford-Evans J, Naper R 2002 Appl. Phys. B 75 249

    [7]

    Goldenstein C S, Mitchell Spearrin R, Hanson R K 2016 Appl. Opt. 55 479

    [8]

    Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 物理学报 54 1927]

    [9]

    Xia H H, Kan R F, Liu J G, Xu Z Y, He Y B 2016 Chin. Phys. B 25 064205

    [10]

    Rieker G B, Jeffries J B, Hanson R K, Mathur T, Gruber M R, Carter C D 2009 Proc. Combst. Inst. 32 831

    [11]

    Huang Q B, Xu X M, Li C J, Ding Y P, Cao C, Yin L Z, Ding J F 2016 Chin. Phys. B 25 114202

    [12]

    Chakraborty A L, Ruxton K, Johnstone W, Lengden M, Duffin K 2009 Opt. Express 17 9602

    [13]

    Nadezhdinskii A, Berezin A, Chernin S, Ershov O, Kutnyak V 1999 Spectrochim. Acta A 55 2083

    [14]

    Reid J, Labrie D 1981 Appl. Phys. B 26 203

    [15]

    Duffin K, McGettrick A J, Johnstone W, Stewart G, Moodie D G 2007 J. Lightwave Technol. 25 3114

    [16]

    Fernholz T, Teichert H, Ebert V 2002 Appl. Phys. B 75 229

    [17]

    Cao Y N, Wang G S, Tan T, Wang L, Mei J X, Cai T D, Gao X M 2016 Acta Phys. Sin. 65 084202 (in Chinese) [曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明 2016 物理学报 65 084202]

    [18]

    Kluczynski P, Axner O 1999 Appl. Opt. 38 5803

    [19]

    Rothman L S, Gordon I E, Babikov Y 2013 J. Quant. Spectrosc. Ra. 130 4

    [20]

    Werle P W, Mazzinghi P, D'Amato F, Rosa M D, Maurer K, Slemr F 2004 Spectrochim. Acta A 60 1685

  • [1] Li Shao-Min, Sun Li-Qun. Measurement of methane gas with high absorbance based on modified wavelength modulation spectroscopy. Acta Physica Sinica, 2023, 72(1): 010701. doi: 10.7498/aps.72.20221725
    [2] Zhao Rong, Zhou Bin, Liu Qi, Dai Ming-Lu, Wang Bu-Bin, Wang Yi-Hong. Online tomography algorithm based on laser absorption spectroscopy. Acta Physica Sinica, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [3] Wang Yuan-Yuan, Wang Xian-Zhi, Song Jia-Jun, Zhang Xu, Wang Zhao-Hua, Wei Zhi-Yi. Amplification mechanism in stimulated Raman backward scattering of ultraintense laser in uniform plasma. Acta Physica Sinica, 2022, 71(5): 055202. doi: 10.7498/aps.71.20211270
    [4] Shaomin Li,  Liqun Sun. Large absorbance methane measurement based on wavelength modulation spectroscopy. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221725
    [5] Wang Zhi-Peng, Guan Bao-Lu, Zhang Feng, Yang Jia-Wei. Liquid crystal tunable vertical cavity surface emission laser with inner cavity sub-wavelength grating. Acta Physica Sinica, 2021, 70(22): 224208. doi: 10.7498/aps.70.20210957
    [6] Wang Chen, An Hong-Hai, Xiong Jun, Fang Zhi-Heng, Ji Yu, Lian Chang-Wang, Xie Zhi-Yong, Guo Er-Fu, He Zhi-Yu, Cao Zhao-Dong, Wang Wei, Yan Rui, Pei Wen-Bing. Spectral structures of backward stimulated Brillouin scattering driven by a picosecond laser. Acta Physica Sinica, 2021, 70(19): 195202. doi: 10.7498/aps.70.20210568
    [7] Tao Meng-Meng, Tao Bo, Ye Jing-Feng, Shen Yan-Long, Huang Ke, Ye Xi-Sheng, Zhao Jun. Linewidth compression of tunable Tm-doped fiber laser and its hyperspectral absorption application. Acta Physica Sinica, 2020, 69(3): 034205. doi: 10.7498/aps.69.20191515
    [8] Liu Bin, Zhao Peng-Xiang, Zhao Xia, Luo Yue, Zhang Li-Chao. Multiple aperture underwater imaging algorithm based on polarization information fusion. Acta Physica Sinica, 2020, 69(18): 184202. doi: 10.7498/aps.69.20200471
    [9] Ding Wu-Wen, Sun Li-Qun. Phase sensitive chirped laser dispersion spectroscopy under high absorbance conditions. Acta Physica Sinica, 2017, 66(12): 120601. doi: 10.7498/aps.66.120601
    [10] Geng Hui, Liu Jian-Guo, Zhang Yu-Jun, Kan Rui-Feng, Xu Zhen-Yu, Yao Lu, Ruan Jun. Ethanol vapor measurement based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [11] Tan Wei, Fu Xiao-Fang, Li Zhi-Xin, Zhao Gang, Yan Xiao-Juan, Ma Wei-Guang, Dong Lei, Zhang Lei, Yin Wang-Bao, Jia Suo-Tang. The wavelength tunable 589 nm laser output based on singly resonant sum-frequency generation and the measurement of saturate fluorescence spectrum of sodium atom. Acta Physica Sinica, 2013, 62(9): 094211. doi: 10.7498/aps.62.094211
    [12] Cheng Si-Yang, Xu Liang, Gao Min-Guang, Jin Ling, Li Sheng, Feng Shu-Xiang, Liu Jian-Guo, Liu Wen-Qing. Study on remote sensing of carbon dioxide column concentration in the atmosphere by direct-sun infrared absorption spectroscopy. Acta Physica Sinica, 2013, 62(12): 124206. doi: 10.7498/aps.62.124206
    [13] Zhang Shuai, Liu Wen-Qing, Zhang Yu-Jun, Ruan Jun, Kan Rui-Feng, You Kun, Yu Dian-Qiang, Dong Jin-Ting, Han Xiao-Lei. Research of quantitative remote sensing of natural gas pipeline leakage based on laser absorption spectroscopy. Acta Physica Sinica, 2012, 61(5): 050701. doi: 10.7498/aps.61.050701
    [14] Wang Xiao-Bo, Ma Wei-Guang, Wang Jing-Jing, Xiao Lian-Tuan, Jia Suo-Tang. Single photon wavelength modulation absorption spectrum of acetylene for 1.5 m laser wavelength stabilization. Acta Physica Sinica, 2012, 61(10): 104205. doi: 10.7498/aps.61.104205
    [15] Meng Xiang-Fu, Wang Chen, An Hong-Hai, Jia Guo, Fang Zhi-Heng, Zhou Hua-Zhen, Sun Jin-Ren, Wang Wei, Fu Si-Zu. Research of coherence between driven-laser beams and its influence on backscatter. Acta Physica Sinica, 2012, 61(18): 185202. doi: 10.7498/aps.61.185202
    [16] Liu Yan, Wang Lei-Shi, Tao Pei-Lin, Feng Su-Chun, Yin Guo-Lu, Ren Wen-Hua, Tan Zhong-Wei, Jian Shui-Sheng. Output characteristics of wavelength tunable fiber lasers based on sampled Bragg gratings. Acta Physica Sinica, 2011, 60(2): 024207. doi: 10.7498/aps.60.024207
    [17] Xie Shi-Yong, Lu Yuan-Fu, Bo Yong, Cui Qian-Jin, Xu Yi-Ting, Xu Jia-Lin, Peng Qin-Jun, Cui Da-Fu, Xu Zu-Yan. High power tunable single-frequency 1064 nm quasi-continuous-wave laser oscillator-amplifier system. Acta Physica Sinica, 2009, 58(7): 4659-4663. doi: 10.7498/aps.58.4659
    [18] Yuan Jian-Hui, Yang Chang-Hu, Zhang Zhen-Hua, Yuan Xiao-Bo. Spectral characteristics and crystal field parameters of the Cr3+ doped Cd3Al2Ge3O12. Acta Physica Sinica, 2008, 57(8): 5272-5276. doi: 10.7498/aps.57.5272
    [19] Guo Yong-Juan, Sun Jun-Qiang, Wang Jian, Li Jing. Tunable all-optical wavelength conversion based on fiber ring lasers. Acta Physica Sinica, 2007, 56(8): 4602-4607. doi: 10.7498/aps.56.4602
    [20] Li Pei-Li, Zhang Xin-Liang, Chen Jun, Huang Li-Rong, Huang De-Xiu. Theoretical analysis of tunable wavelength conversion based on FWM in semiconductor fiber ring laser. Acta Physica Sinica, 2005, 54(3): 1222-1228. doi: 10.7498/aps.54.1222
Metrics
  • Abstract views:  6383
  • PDF Downloads:  407
  • Cited By: 0
Publishing process
  • Received Date:  06 January 2017
  • Accepted Date:  16 February 2017
  • Published Online:  05 May 2017

/

返回文章
返回