Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ground state properties and spectral properties of borospherene B40 under different external electric fields

Li Shi-Xiong Zhang Zheng-Ping Long Zheng-Wen Qin Shui-Jie

Ground state properties and spectral properties of borospherene B40 under different external electric fields

Li Shi-Xiong, Zhang Zheng-Ping, Long Zheng-Wen, Qin Shui-Jie
PDF
Get Citation
  • The recent discovery of borospherene B40 marks the onset of a new class of all-boron fullerenes. External electric field can influence the structure and property of molecule. It is necessary to understand the electrostatic field effect in the borospherene B40. In this work, density functional theory method at the PBE0 level with the 6-31G* basis set is used to investigate the ground state structures, mulliken atomic charges, the highest occupied molecular orbital (HOMO) energy levels, the lowest unoccupied molecular orbital (LUMO) energy levels, energy gaps, electric dipole moments, infrared spectra and Raman spectra of borospherene B40 under the external electric field within the range of values F=0-0.06 a.u.. The electronic spectra (the first 18 excited states contain excited energies, excited wavelengths and oscillator strengths) of borospherene B40 are calculated by the time-dependent density functional theory method (TD-PBE0) with the 6-31G* basis set under the same external electric field. The results show that borospherene B40 can be elongated in the direction of electric field and B40 molecule is polarized under the external electric field. Meanwhile, the addition of external electric field results in lower symmetry (C2v), however, electronic state of borospherene B40 is not changed under the external electric field. Moreover, the calculated results show that the electric dipole moment is proved to be increasing with the increase of the external field intensity, but the total energy and energy gap are proved to decrease with the increase of external field intensity. The addition of external electric field can modify the infrared and Raman spectra, such as the shift of vibrational frequency and the strengthening of infrared and Raman peaks. Furthermore, the calculated results indicate that the external electric field has a significant effect on the electronic spectrum of borospherene B40. The increase of the electric field intensity can lead to the redshift of electronic spectrum. With the change of the electric field intensity, the strongest excited state (with the biggest oscillator strength) can become very weak (with the small oscillator strength) or optically inactive (with the oscillator strength of zero). Meanwhile, the weak excited state can become the strongest excited state by the external field. The ground state properties and spectral properties of borospherene B40 can be modified by the external electric field. Our findings can provide theoretical guidance for the application of borospherene B40 in the future.
      Corresponding author: Zhang Zheng-Ping, zpzhang@gzu.edu.cn
    • Funds: Project supported by the International Science and Technology Cooperation Program of China (Grant No. 2014DFA00670), the Growth Foudation for Young Scientists of Education Department of Guizhou Province, China (Grant No. QJH KY[2016]217) and the Characteristic Key Laboratory Foudation of Education Department of Guizhou Province, China (Grant No. QJH KY[2014]217).
    [1]

    Kroto H W, Heath J R, Obrien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Wang X S, Li Q Q, Xie J, Jin Z, Wang J Y, Li Y, Jiang K L, Tan S S 2009 Nano Lett. 9 3137

    [5]

    Zhai H J, Kiran B, Li J, Wang L S 2003 Nature Mater. 2 827

    [6]

    Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Nati. Acad. Sci 102 961

    [7]

    Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S 2006 Coord. Chem. Rev. 250 2811

    [8]

    Oger E, Crawford N R M, Kelting R, Weis P, Kappes M M, Ahlrichs R 2007 Angew. Chem. Int. Ed. 46 8503

    [9]

    Chen Q, Wei G F, Tian W J, Bai H, Liu Z P, Zhai H J Li S D 2014 Phys. Chem. Chem. Phys. 16 18282

    [10]

    Szwacki N G, Sadrzadeh A, Yakobson B I 2007 Phys. Rev. Lett. 98 166804

    [11]

    Sheng X L, Yan Q B, Zheng Q R, Su G 2009 Phys. Chem. Chem. Phys. 11 9696

    [12]

    Wang L, Zhao J J, Li F Y, Chen Z F 2010 Chem. Phys. Lett. 501 16

    [13]

    Cheng L J 2012 J. Chem. Phys. 136 104301

    [14]

    Lu H G, Li S D 2013 J. Chem. Phys. 139 224307

    [15]

    Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S 2014 Nat. Chem. 6 727

    [16]

    He R X, Zeng X C 2015 Chem. Commun. 51 3185

    [17]

    Li S X, Zhang Z P, Long Z W, Sun G Y, Qin S J 2016 Sci. Rep. 6 25020

    [18]

    Bai H, Chen Q, Zhai H J, Li S D 2015 Angew. Chem. Int. Ed. 54 941

    [19]

    Jin P, Hou Q H, Tang C C, Chen Z F 2015 Theor. Chem. Acc. 34 1

    [20]

    Yang Z, Ji Y L, Lan G Q, Xu L C, Liu X G, Xu B S 2015 Solid State Commun. 217 38

    [21]

    An Y P, Zhang M J, Wu D P, Fu Z M, Wang T T, Xia C X 2016 Phys. Chem. Chem. Phys. 18 12024

    [22]

    Dong H L, Hou T J, Lee S T, Li Y Y 2015 Sci. Rep. 5 09952

    [23]

    Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012 Acta Phys. Sin. 61 043104 (in Chinese) [徐国亮, 谢会香, 袁伟, 张现周, 刘玉芳 2012 物理学报 61 043104]

    [24]

    Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101 (in Chinese) [曹欣伟, 任杨, 刘慧, 李姝丽 2014 物理学报 63 043101]

    [25]

    Li S X, Wu Y G, Linhu R F, Sun G Y, Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101 (in Chinese) [李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 物理学报 64 043101]

    [26]

    Shen H J, Shi Y J 2004 Chin. Atom Mol. Phys. 21 617 (in Chinese) [沈海军, 史友进 2004 原子与分子物理学报 21 617]

    [27]

    Frisch M J, Tracks G W, Schlegel H B, et al. 2009 Gaussian 09, Revision A. 02 (Wallingford CT: Gaussian Inc.)

    [28]

    Tuchin A V, Bityutskaya L A, Bormontov E N 2015 Eur. Phys. J. D 69 87

    [29]

    Chen, Q, Zhang S Y, Bai H, Tian W J, Gao T, Li H R, Miao C Q, Mu Y W, Lu H G, Zhai H J, Li S D 2015 Angew. Chem. Int. Ed. 54 8160

  • [1]

    Kroto H W, Heath J R, Obrien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Wang X S, Li Q Q, Xie J, Jin Z, Wang J Y, Li Y, Jiang K L, Tan S S 2009 Nano Lett. 9 3137

    [5]

    Zhai H J, Kiran B, Li J, Wang L S 2003 Nature Mater. 2 827

    [6]

    Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Nati. Acad. Sci 102 961

    [7]

    Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S 2006 Coord. Chem. Rev. 250 2811

    [8]

    Oger E, Crawford N R M, Kelting R, Weis P, Kappes M M, Ahlrichs R 2007 Angew. Chem. Int. Ed. 46 8503

    [9]

    Chen Q, Wei G F, Tian W J, Bai H, Liu Z P, Zhai H J Li S D 2014 Phys. Chem. Chem. Phys. 16 18282

    [10]

    Szwacki N G, Sadrzadeh A, Yakobson B I 2007 Phys. Rev. Lett. 98 166804

    [11]

    Sheng X L, Yan Q B, Zheng Q R, Su G 2009 Phys. Chem. Chem. Phys. 11 9696

    [12]

    Wang L, Zhao J J, Li F Y, Chen Z F 2010 Chem. Phys. Lett. 501 16

    [13]

    Cheng L J 2012 J. Chem. Phys. 136 104301

    [14]

    Lu H G, Li S D 2013 J. Chem. Phys. 139 224307

    [15]

    Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S 2014 Nat. Chem. 6 727

    [16]

    He R X, Zeng X C 2015 Chem. Commun. 51 3185

    [17]

    Li S X, Zhang Z P, Long Z W, Sun G Y, Qin S J 2016 Sci. Rep. 6 25020

    [18]

    Bai H, Chen Q, Zhai H J, Li S D 2015 Angew. Chem. Int. Ed. 54 941

    [19]

    Jin P, Hou Q H, Tang C C, Chen Z F 2015 Theor. Chem. Acc. 34 1

    [20]

    Yang Z, Ji Y L, Lan G Q, Xu L C, Liu X G, Xu B S 2015 Solid State Commun. 217 38

    [21]

    An Y P, Zhang M J, Wu D P, Fu Z M, Wang T T, Xia C X 2016 Phys. Chem. Chem. Phys. 18 12024

    [22]

    Dong H L, Hou T J, Lee S T, Li Y Y 2015 Sci. Rep. 5 09952

    [23]

    Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012 Acta Phys. Sin. 61 043104 (in Chinese) [徐国亮, 谢会香, 袁伟, 张现周, 刘玉芳 2012 物理学报 61 043104]

    [24]

    Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101 (in Chinese) [曹欣伟, 任杨, 刘慧, 李姝丽 2014 物理学报 63 043101]

    [25]

    Li S X, Wu Y G, Linhu R F, Sun G Y, Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101 (in Chinese) [李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 物理学报 64 043101]

    [26]

    Shen H J, Shi Y J 2004 Chin. Atom Mol. Phys. 21 617 (in Chinese) [沈海军, 史友进 2004 原子与分子物理学报 21 617]

    [27]

    Frisch M J, Tracks G W, Schlegel H B, et al. 2009 Gaussian 09, Revision A. 02 (Wallingford CT: Gaussian Inc.)

    [28]

    Tuchin A V, Bityutskaya L A, Bormontov E N 2015 Eur. Phys. J. D 69 87

    [29]

    Chen, Q, Zhang S Y, Bai H, Tian W J, Gao T, Li H R, Miao C Q, Mu Y W, Lu H G, Zhai H J, Li S D 2015 Angew. Chem. Int. Ed. 54 8160

  • [1] Wu Yong-Gang, Li Shi-Xiong, Hao Jin-Xin, Xu Mei, Sun Guang-Yu, Linghu Rong-Feng. Properties of ground state and spectrum of CdSe in different external electric fields. Acta Physica Sinica, 2015, 64(15): 153102. doi: 10.7498/aps.64.153102
    [2] Li Shi-Xiong, Wu Yong-Gang, Linghu Rong-Feng, Sun Guang-Yu, Zhang Zheng-Ping, Qin Shui-Jie. Ground state properties and excitation properties of ZnSe under different external electric fields. Acta Physica Sinica, 2015, 64(4): 043101. doi: 10.7498/aps.64.043101
    [3] Yang Tao, Liu Dai-Jun, Chen Jian-Jun. Molecular structure and properties of sulfur dioxide under the external electric field. Acta Physica Sinica, 2016, 65(5): 053101. doi: 10.7498/aps.65.053101
    [4] Ling Zhi-Gang, Tang Yan-Lin, Li Tao, Li Yu-Peng, Wei Xiao-Nan. Molecular structure and properties of zirconiumdioxide under the external electric field. Acta Physica Sinica, 2014, 63(2): 023102. doi: 10.7498/aps.63.023102
    [5] Ling Zhi-Gang, Tang Yan-Lin, Li Tao, Li Yu-Peng, Wei Xiao-Nan. Molecular structure and electronic spectrum of 2, 2, 5, 5-tetrachlorobiphenyl under the extenal electric field. Acta Physica Sinica, 2013, 62(22): 223102. doi: 10.7498/aps.62.223102
    [6] Zhu Zheng-He, Wang Fan-Hou, Min Jun, Huang Duo-Hui. Study on structure characteristics of MgO molecule under external electric field. Acta Physica Sinica, 2009, 58(5): 3052-3057. doi: 10.7498/aps.58.3052
    [7] Huang Duo-Hui, Wang Fan-Hou, Cheng Xiao-Hong, Wan Ming-Jie, Jiang Gang. The study of structure characteristics of GeTe and GeSe molecules under the external electric field. Acta Physica Sinica, 2011, 60(12): 123101. doi: 10.7498/aps.60.123101
    [8] An Yue-Hua, Xiong Bi-Tao, Xing Yun, Shen Jing-Xiang, Li Pei-Gang, Zhu Zhi-Yan, Tang Wei-Hua. Structural properties of ZnO molecules under an external electric field. Acta Physica Sinica, 2013, 62(7): 073103. doi: 10.7498/aps.62.073103
    [9] Xu Mei, Linghu Rong-Feng, Zhi Qi-Jun, Yang Xiang-Dong, Wu Wei-Wei. Properties of free radical BeH in external electric field. Acta Physica Sinica, 2016, 65(16): 163102. doi: 10.7498/aps.65.163102
    [10] Du Jian-Bin, Feng Zhi-Fang, Zhang Qian, Han Li-Jun, Tang Yan-Lin, Li Qi-Feng. Molecular structure and electronic spectrum of MoS2under external electric field. Acta Physica Sinica, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [11] Jiang Ming, Yan An-Ying, Zhang Chuan-Wu, Miao Feng, Gou Fu-Jun. Energy and spectrum of BeO molecule under the electric field from different directions. Acta Physica Sinica, 2010, 59(11): 7743-7748. doi: 10.7498/aps.59.7743
    [12] Du Jian-Bin, Tang Yan-Lin, Long Zhen-Wen. Molecular structure and electronic spectrum of pentachlorophenol in the external electric field. Acta Physica Sinica, 2012, 61(15): 153101. doi: 10.7498/aps.61.153101
    [13] Li Tao, Tang Yan-Lin, Ling Zhi-Gang, Li Yu-Peng, Long Zhen-Wen. Influence of external electric field on the molecular structure and electronic spectrum of paranitrochlorobenzene. Acta Physica Sinica, 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [14] Xu Guo-Liang, Liu Xue-Feng, Xia Yao-Zheng, Zhang Xian-Zhou, Liu Yu-Fang. Excitation of Si2O molecule under external electric field. Acta Physica Sinica, 2010, 59(11): 7756-7761. doi: 10.7498/aps.59.7756
    [15] Cao Xin-Wei, Ren Yang, Liu Hui, Li Shu-Li. Molecular structure and excited states for BN under strong electric field. Acta Physica Sinica, 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [16] Li Ya-Sha, Xie Yun-Long, Huang Tai-Huan, Xu Cheng, Liu Guo-Cheng. Molecular structure and properties of salt cross-linked polyethylene under external electric field based on density functional theory. Acta Physica Sinica, 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [17] Xu Guo-Liang, Liu Yu-Fang, Sun Jin-Feng, Zhang Xian-Zhou, Zhu Zheng-He. Study on the structural properties of SiO molecule under the external electric field. Acta Physica Sinica, 2007, 56(10): 5704-5708. doi: 10.7498/aps.56.5704
    [18] Xu Guo-Liang, Xia Yao-Zheng, Liu Xue-Feng, Zhang Xian-Zhou, Liu Yu-Fang. Effect of external electric field excitation on titanium monoxide. Acta Physica Sinica, 2010, 59(11): 7762-7768. doi: 10.7498/aps.59.7762
    [19] Xu Guo-Liang, Xie Hui-Xiang, Yuan Wei, Zhang Xian-Zhou, Liu Yu-Fang. Electroluminescence properties of SiN molecule under different external electric fields. Acta Physica Sinica, 2012, 61(4): 043104. doi: 10.7498/aps.61.043104
    [20] Li Ya-Sha, Sun Lin-Xiang, Zhou Xiao, Chen Kai, Wang Hui-Yao. Structure and excitation characteristics of C5F10O under external electric field based on density functional theory. Acta Physica Sinica, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
  • Citation:
Metrics
  • Abstract views:  220
  • PDF Downloads:  123
  • Cited By: 0
Publishing process
  • Received Date:  14 December 2016
  • Accepted Date:  12 March 2017
  • Published Online:  20 May 2017

Ground state properties and spectral properties of borospherene B40 under different external electric fields

    Corresponding author: Zhang Zheng-Ping, zpzhang@gzu.edu.cn
  • 1. College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China;
  • 2. School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China;
  • 3. College of Physics, Guizhou University, Guiyang 550025, China;
  • 4. Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025, China
Fund Project:  Project supported by the International Science and Technology Cooperation Program of China (Grant No. 2014DFA00670), the Growth Foudation for Young Scientists of Education Department of Guizhou Province, China (Grant No. QJH KY[2016]217) and the Characteristic Key Laboratory Foudation of Education Department of Guizhou Province, China (Grant No. QJH KY[2014]217).

Abstract: The recent discovery of borospherene B40 marks the onset of a new class of all-boron fullerenes. External electric field can influence the structure and property of molecule. It is necessary to understand the electrostatic field effect in the borospherene B40. In this work, density functional theory method at the PBE0 level with the 6-31G* basis set is used to investigate the ground state structures, mulliken atomic charges, the highest occupied molecular orbital (HOMO) energy levels, the lowest unoccupied molecular orbital (LUMO) energy levels, energy gaps, electric dipole moments, infrared spectra and Raman spectra of borospherene B40 under the external electric field within the range of values F=0-0.06 a.u.. The electronic spectra (the first 18 excited states contain excited energies, excited wavelengths and oscillator strengths) of borospherene B40 are calculated by the time-dependent density functional theory method (TD-PBE0) with the 6-31G* basis set under the same external electric field. The results show that borospherene B40 can be elongated in the direction of electric field and B40 molecule is polarized under the external electric field. Meanwhile, the addition of external electric field results in lower symmetry (C2v), however, electronic state of borospherene B40 is not changed under the external electric field. Moreover, the calculated results show that the electric dipole moment is proved to be increasing with the increase of the external field intensity, but the total energy and energy gap are proved to decrease with the increase of external field intensity. The addition of external electric field can modify the infrared and Raman spectra, such as the shift of vibrational frequency and the strengthening of infrared and Raman peaks. Furthermore, the calculated results indicate that the external electric field has a significant effect on the electronic spectrum of borospherene B40. The increase of the electric field intensity can lead to the redshift of electronic spectrum. With the change of the electric field intensity, the strongest excited state (with the biggest oscillator strength) can become very weak (with the small oscillator strength) or optically inactive (with the oscillator strength of zero). Meanwhile, the weak excited state can become the strongest excited state by the external field. The ground state properties and spectral properties of borospherene B40 can be modified by the external electric field. Our findings can provide theoretical guidance for the application of borospherene B40 in the future.

Reference (29)

Catalog

    /

    返回文章
    返回