Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Excited-state dynamics of m-dichlorobezene in ultrashort laser pulses

Shen Huan Hu Chun-Long Deng Xu-Lan

Excited-state dynamics of m-dichlorobezene in ultrashort laser pulses

Shen Huan, Hu Chun-Long, Deng Xu-Lan
PDF
Get Citation
  • The excited state dynamics of aromatic hydrocarbon has attracted a great deal of attention due to its important role in photophysics and atmosphere chemistry. With the benefit of ultra-short laser pulses, the ultrafast phenomenon can be studied in a time resolved way. In the present work, m-dichlorobenzene, a typical model of aromatic hydrocarbon, is investigated by the femtosecond time resolved time-of-flight mass spectroscopy. In order to reveal its excited state dynamics, m-dichlorobenzene is pumped to the excited state after absorbing one 200/267 nm photon, and then ionized by absorbing 800 nm photons. Time resolved mass spectra are recorded with time of flight. At 200 nm, m-dichlorobenzene is excited to a (, *) state. Three decay components are observed in the transient profiles of m-dichlorobenzene ions, which correspond to three competition channels in the excited states. The first channel is an ultrafast dissociation process via a repulsive state with (n, *) or (, *) character, and the lifetime is (0.150.01) ps. The second channel is an internal conversion process from the populated excited state to the hot ground state, and the lifetime of the redistribution of the internal vibration in the hot ground state is (4.940.08) ps. The third channel is an intersystem crossing process to the triplet state, and the lifetime is (110.094.33) ps. Moreover, the transient profiles of C6H4Cl+/C6H4+ display similar decay tendencies to the transient profile of parent ion, except that longer lifetime constants ((127.3829.29) ps for C6H4Cl+, and (123.7637.12) ps for C6H4+, respectively) are observed. It is likely that the fragment ions result from the dissociative ionization of the parent molecule. At 267 nm, m-dichlorobenzene is excited to the first excited state with (n, *) character. Only C6H4Cl2+ and C6H4Cl+ are observed in the two-color mass spectrum. A slow decay component (~(1.060.05) ns) is obtained for both the parent ion and the fragment ion. It is attributed to an intersystem crossing process from the first excited state S1 to the triplet state T1. Furthermore, the transient profile of C6H4Cl+ displays other decay components, i.e., (2.480.09) ps, in addition to the slow decay component. This fast decay process can be attributed to an internal conversion process from the populated excited states to the hot ground states. The present study provides a more in-depth understanding of the ultrafast excited state dynamics of m-dichlorobenzene.
      Corresponding author: Shen Huan, shenhuan@mail.hzau.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.21403080).
    [1]

    Bowman R M, Dantus M, Zewail A H 2013 Chem. Phys. Lett. 589 42

    [2]

    Zewail A H 1988 Science 242 1645

    [3]

    Suzuki T 2014 Molecules 19 2410

    [4]

    Liu Z M, Hu C L, Li S, Xu Y Q, Wang Y M, Zhang B 2015 Chem. Phys. Lett. 619 44

    [5]

    Yu H, Sanchez-Rodriguez J A, Pollum M, Crespo-Hernandez C E, Mai S, Marquetand P, Gonzalez L, Ullrich S 2016 Phys. Chem. Chem. Phys. 18 20168

    [6]

    Stolow A 2014 Nat. Chem. 6 759

    [7]

    Corrales M, Gonzalez-Vazquez J, Villanueva G B, Banares L 2014 Nat. Chem. 6 785

    [8]

    Stair R 1949 J. Res. NBS 42 587

    [9]

    Ichimura T, Mori Y, Shinohara H, Nishi N 1997 J. Chem. Phys. 107 835

    [10]

    Lin M F, Dyakov Y A, Lin S H, Lee Y T, Ni C K 2005 J. Phys. Chem. 109 8344

    [11]

    Gu X B, Wang G J, Huang J H, Han K L, He G Z, Lou N Q 2002 Phys. Chem. Chem. Phys. 4 6027

    [12]

    Youn Y Y, Kwon C H, Choe J C, Kim M S 2002 J. Chem. Phys. 117 2538

    [13]

    Karlsson D, Davidsson J 2008 J. Photochem. Photobiol. A: Chem. 195 242

    [14]

    Zhang J F, Lu H, Zuo W L, Xu H F, Jin M X, Ding D J 2015 Chin. Phys. B 24 113301

    [15]

    Verhart N R, Navarro P, Faez S, Orrit M 2016 Phys. Chem. Chem. Phys. 18 17655

    [16]

    Potts A W, Holland D M P, Powis I, Karlsson L, Trofimov A B, Bodzuk I L 2013 Chem. Phys. 415 84

    [17]

    Cao Z Z, Wei Z R, Hua L Q, Hu C J, Zhang S, Zhang B 2009 Chem. Phys. Chem. 10 1299

    [18]

    Wang Y Q, Yuan L W, Wang L, He G Z, Zhang Z G, Wang Q Y 2004 Chem. J. Chin. Univ. 25 1517 (in Chinese) [王艳秋, 袁丽威, 王利, 何国钟, 张志刚, 王清月 2004 高等学校化学学报 25 1517]

    [19]

    Yuan L W, Wang Y Q, Wang L, Bai J L, He G Z 2004 Sci. China Ser. B: Chem. 34 121 (in Chinese) [袁丽威, 王艳秋, 王利, 白吉玲, 何国钟 2004 中国科学B辑 化学 34 121]

    [20]

    Yuan L W, Zhu J Y, Wang Y Q, Wang L, Bai J L, He G Z 2005 Chem. Phys. Lett. 410 352

    [21]

    Li X Y, Wang L, Wang Y Q, Song Z, Liu B K 2015 Acta Phys.-Chim. Sin. 31 1655 (in Chinese) [李晓营, 王利, 王艳秋, 宋哲, 刘本康 2015 物理化学学报 31 1655]

    [22]

    Qin C C, Liu Y Z, Zhang S, Wang Y M, Tang Y, Zhang B 2011 Phys. Rev. A 83 033423

    [23]

    Han K L, He G Z 2007 J. Photochem. Photobiol. C: Photochem. Rev. 8 55

    [24]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [25]

    Olesik S, Baer T, Morrow J C 1986 J. Phys. Chem. 90 3563

    [26]

    Brown P 1970 Org. Mass Spectrom. 3 639

    [27]

    Roeterdink W G, Janssen M H M 2002 Phys. Chem. Chem. Phys. 4 601

    [28]

    Torres I, Martinez R, Castano F 2002 J. Phys. B: At. Mol. Opt. Phys. 35 2423

    [29]

    Shimoda A, Hikida T, Mori Y 1979 J. Phys. Chem. 83 1309

  • [1]

    Bowman R M, Dantus M, Zewail A H 2013 Chem. Phys. Lett. 589 42

    [2]

    Zewail A H 1988 Science 242 1645

    [3]

    Suzuki T 2014 Molecules 19 2410

    [4]

    Liu Z M, Hu C L, Li S, Xu Y Q, Wang Y M, Zhang B 2015 Chem. Phys. Lett. 619 44

    [5]

    Yu H, Sanchez-Rodriguez J A, Pollum M, Crespo-Hernandez C E, Mai S, Marquetand P, Gonzalez L, Ullrich S 2016 Phys. Chem. Chem. Phys. 18 20168

    [6]

    Stolow A 2014 Nat. Chem. 6 759

    [7]

    Corrales M, Gonzalez-Vazquez J, Villanueva G B, Banares L 2014 Nat. Chem. 6 785

    [8]

    Stair R 1949 J. Res. NBS 42 587

    [9]

    Ichimura T, Mori Y, Shinohara H, Nishi N 1997 J. Chem. Phys. 107 835

    [10]

    Lin M F, Dyakov Y A, Lin S H, Lee Y T, Ni C K 2005 J. Phys. Chem. 109 8344

    [11]

    Gu X B, Wang G J, Huang J H, Han K L, He G Z, Lou N Q 2002 Phys. Chem. Chem. Phys. 4 6027

    [12]

    Youn Y Y, Kwon C H, Choe J C, Kim M S 2002 J. Chem. Phys. 117 2538

    [13]

    Karlsson D, Davidsson J 2008 J. Photochem. Photobiol. A: Chem. 195 242

    [14]

    Zhang J F, Lu H, Zuo W L, Xu H F, Jin M X, Ding D J 2015 Chin. Phys. B 24 113301

    [15]

    Verhart N R, Navarro P, Faez S, Orrit M 2016 Phys. Chem. Chem. Phys. 18 17655

    [16]

    Potts A W, Holland D M P, Powis I, Karlsson L, Trofimov A B, Bodzuk I L 2013 Chem. Phys. 415 84

    [17]

    Cao Z Z, Wei Z R, Hua L Q, Hu C J, Zhang S, Zhang B 2009 Chem. Phys. Chem. 10 1299

    [18]

    Wang Y Q, Yuan L W, Wang L, He G Z, Zhang Z G, Wang Q Y 2004 Chem. J. Chin. Univ. 25 1517 (in Chinese) [王艳秋, 袁丽威, 王利, 何国钟, 张志刚, 王清月 2004 高等学校化学学报 25 1517]

    [19]

    Yuan L W, Wang Y Q, Wang L, Bai J L, He G Z 2004 Sci. China Ser. B: Chem. 34 121 (in Chinese) [袁丽威, 王艳秋, 王利, 白吉玲, 何国钟 2004 中国科学B辑 化学 34 121]

    [20]

    Yuan L W, Zhu J Y, Wang Y Q, Wang L, Bai J L, He G Z 2005 Chem. Phys. Lett. 410 352

    [21]

    Li X Y, Wang L, Wang Y Q, Song Z, Liu B K 2015 Acta Phys.-Chim. Sin. 31 1655 (in Chinese) [李晓营, 王利, 王艳秋, 宋哲, 刘本康 2015 物理化学学报 31 1655]

    [22]

    Qin C C, Liu Y Z, Zhang S, Wang Y M, Tang Y, Zhang B 2011 Phys. Rev. A 83 033423

    [23]

    Han K L, He G Z 2007 J. Photochem. Photobiol. C: Photochem. Rev. 8 55

    [24]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [25]

    Olesik S, Baer T, Morrow J C 1986 J. Phys. Chem. 90 3563

    [26]

    Brown P 1970 Org. Mass Spectrom. 3 639

    [27]

    Roeterdink W G, Janssen M H M 2002 Phys. Chem. Chem. Phys. 4 601

    [28]

    Torres I, Martinez R, Castano F 2002 J. Phys. B: At. Mol. Opt. Phys. 35 2423

    [29]

    Shimoda A, Hikida T, Mori Y 1979 J. Phys. Chem. 83 1309

  • [1] Wang Yan-Mei, Tang Ying, Zhang Song, Long Jin-You, Zhang Bing. Excited state dynamics of molecules studied with femtosecond time-resolved mass spectrometry and photoelectron imaging. Acta Physica Sinica, 2018, 67(22): 227802. doi: 10.7498/aps.67.20181334
    [2] Cao Ning, Long Yong-Bing, Zhang Zhi-Guo, Gao Li-Juan, Yuan Jie, Zhao Bo-Ru, Zhao Shi-Ping, Yang Qian-Sheng, Zhao Ji-Min, Fu Pan-Ming. Femtosecond time-resolved dynamics in electron-doped high-Tc superconductor La2-xCexCuO4. Acta Physica Sinica, 2008, 57(4): 2543-2547. doi: 10.7498/aps.57.2543
    [3] Wang Yan, Yao Zhi, Feng Chun-Lei, Liu Jia-Hong, Ding Hong-Bin. 355 nm laser photoionization of formaldehyde time-of-flight mass spectroscopic study. Acta Physica Sinica, 2012, 61(1): 013301. doi: 10.7498/aps.61.013301
    [4] Yuan Jin-Peng, Ji Zhong-Hua, Yang Yan, Zhang Hong-Shan, Zhao Yan-Ting, Ma Jie, Wang Li-Rong, Xiao Lian-Tuan, Jia Suo-Tang. Experimental investigation on ionized ultracold molecules formed in a magneto-optical trap by time-of-flight mass spectroscopy. Acta Physica Sinica, 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [5] Liu Yu-Zhu, Chen Yun-Yun, Zheng Gai-Ge, Jin Feng, Gregor Knopp. Multiphoton ionization and dissociation dynamics of Freon-113 induced by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [6] Liu Yu-Zhu, Xiao Shao-Rong, Wang Jun-Feng, He Zhong-Fu, Qiu Xue-Jun, Gregor Knopp. Multi-photon dissociation dynamics of Freon 1110 induced by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(11): 113301. doi: 10.7498/aps.65.113301
    [7] Yan Yi-Hui, Liu Yu-Zhu, Ding Peng-Fei, Yin Wen-Yi. Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique. Acta Physica Sinica, 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [8] Luo Xiao-Lin, Kong Xiang-Lei, Niu Dong-Mei, Qu Hong-Bo, Li Hai-Yang. Cluster-enhanced generation of multicharged xenon ions in nanosecond laser ionization of xenon beam. Acta Physica Sinica, 2005, 54(2): 606-611. doi: 10.7498/aps.54.606
    [9] Wang Juan, Wu Guo-Hua, Sheng Liu-Si, Zhang Yun-Wu, Hu Zheng-Fa, Wang Zhen-Ya, Kong Xiang-Lei, Zhang Xian-Yi, Li Hai-Yang, Zhou Shi-Kang. . Acta Physica Sinica, 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
    [10] Wang Zhen-Xia, Zhu Jian-Kang, Zhang Wei, Ren Cui-Lan. Systhesis of C59N and C19N crystals. Acta Physica Sinica, 2009, 58(7): 5046-5050. doi: 10.7498/aps.58.5046
    [11] Liu Yan-Wen, Wang Xiao-Xia, Lu Yu-Xin, Tian Hong, Zhu Hong, Meng Ming-Feng, Zhao Li, Gu Bing. Study on evaporation from alloys used in microwave vacuum electron devices. Acta Physica Sinica, 2016, 65(6): 068502. doi: 10.7498/aps.65.068502
    [12] Bao Jian, Xiong Lu-Yuan, Fang Li, Zheng Hai-Yang, Hu Rui, Zhang Yu-Ying, Kong Xiang-He, Gu Xue-Jun, Zhu Yuan, Zhang Wei-Jun, Xia Zhu-Hong. Real-time measurement of the aerodynamic size of individual aerosol particles. Acta Physica Sinica, 2004, 53(1): 320-324. doi: 10.7498/aps.53.320
    [13] Shi Yong, Li Qi-Feng, Wang Hua, Dai Jing-Hua, Liu Shi-Lin, Ma Xing-Xiao. An approach to obtain the photofragment translational energy distribution from time-of-flight profile. Acta Physica Sinica, 2005, 54(5): 2418-2423. doi: 10.7498/aps.54.2418
    [14] Yao Guan-Xin, Wang Xiao-Li, Du Chuan-Mei, Li Hui-Min, Zhang Xian-Yi, Zheng Xian-Feng, Ji Xue-Han, Cui Zhi-Feng. An experimental investigation on the resonance enhanced multiphoton ionization and dissociation processes of acetone. Acta Physica Sinica, 2006, 55(5): 2210-2214. doi: 10.7498/aps.55.2210
    [15] LI ZHU-QI, KUAN JING-HUI, WU SHAN-LING, YANG TONG-HUA, HE MIN, LU TING, CHENG ZHI-XU, CHEN GUI-YING, YE CHUN-TANG. A ROTATING CRYSTAL NEUTRON TIME-OF-FLIGHT SPECTRO-METER FOR CONDENSED MATTER INVESTIGATION. Acta Physica Sinica, 1980, 171(11): 1462-1470. doi: 10.7498/aps.29.1462
    [16] Zhao Xiao-Hui, Ma Fei, Wu Yi-Shi, Zhang Jian-Ping, Ai Xi-Cheng. Ultrafast internal conversion and vibrational relaxation in singlet excited-state all-trans-β-carotene as revealed by femtosecond time-resolved stimulated Raman spectroscopy. Acta Physica Sinica, 2008, 57(1): 298-306. doi: 10.7498/aps.57.298
    [17] He Jun, Wang Jing, Qiu Ying, Wang Yan-Hua, Zhang Tian-Cai, Wang Jun-Min. Influence of parameter errors on the temperature measurement of cold atoms via short-distance time-of-flight absorption spectra. Acta Physica Sinica, 2008, 57(10): 6221-6226. doi: 10.7498/aps.57.6221
    [18] Jiang Wei-lin, Liu Jia-rui, Lin Yin-nong, Liu Shu-rong. STRUCTURE EFFECT OF SPUTTERRED SILICON CLUSTERS STUDIED BY MEANS OF TIME-OF-FLIGHT METHOD. Acta Physica Sinica, 1991, 40(5): 703-708. doi: 10.7498/aps.40.703
    [19] Wang Yi, Zhang Qiu-Nan, Han Dong, Li Yuan-Jing. Time of flight technology based on multi-gap resistive plate chamber. Acta Physica Sinica, 2019, 68(10): 102901. doi: 10.7498/aps.68.20182192
    [20] Geng Tao, Yan Shu-Bin, Wang Yan-Hua, Yang Hai-Jing, Zhang Tian-Cai, Wang Jun-Min. Temperature measurement of cold atoms in a cesium magneto-optical trap by means of short-distance time-of-flight absorption spectrum. Acta Physica Sinica, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
  • Citation:
Metrics
  • Abstract views:  127
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  30 March 2017
  • Accepted Date:  24 April 2017
  • Published Online:  05 August 2017

Excited-state dynamics of m-dichlorobezene in ultrashort laser pulses

    Corresponding author: Shen Huan, shenhuan@mail.hzau.edu.cn
  • 1. College of Science, Huazhong Agricultural University, Wuhan 430070, China;
  • 2. Institute of Applied Physics, Huazhong Agricultural University, Wuhan 430070, China;
  • 3. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No.21403080).

Abstract: The excited state dynamics of aromatic hydrocarbon has attracted a great deal of attention due to its important role in photophysics and atmosphere chemistry. With the benefit of ultra-short laser pulses, the ultrafast phenomenon can be studied in a time resolved way. In the present work, m-dichlorobenzene, a typical model of aromatic hydrocarbon, is investigated by the femtosecond time resolved time-of-flight mass spectroscopy. In order to reveal its excited state dynamics, m-dichlorobenzene is pumped to the excited state after absorbing one 200/267 nm photon, and then ionized by absorbing 800 nm photons. Time resolved mass spectra are recorded with time of flight. At 200 nm, m-dichlorobenzene is excited to a (, *) state. Three decay components are observed in the transient profiles of m-dichlorobenzene ions, which correspond to three competition channels in the excited states. The first channel is an ultrafast dissociation process via a repulsive state with (n, *) or (, *) character, and the lifetime is (0.150.01) ps. The second channel is an internal conversion process from the populated excited state to the hot ground state, and the lifetime of the redistribution of the internal vibration in the hot ground state is (4.940.08) ps. The third channel is an intersystem crossing process to the triplet state, and the lifetime is (110.094.33) ps. Moreover, the transient profiles of C6H4Cl+/C6H4+ display similar decay tendencies to the transient profile of parent ion, except that longer lifetime constants ((127.3829.29) ps for C6H4Cl+, and (123.7637.12) ps for C6H4+, respectively) are observed. It is likely that the fragment ions result from the dissociative ionization of the parent molecule. At 267 nm, m-dichlorobenzene is excited to the first excited state with (n, *) character. Only C6H4Cl2+ and C6H4Cl+ are observed in the two-color mass spectrum. A slow decay component (~(1.060.05) ns) is obtained for both the parent ion and the fragment ion. It is attributed to an intersystem crossing process from the first excited state S1 to the triplet state T1. Furthermore, the transient profile of C6H4Cl+ displays other decay components, i.e., (2.480.09) ps, in addition to the slow decay component. This fast decay process can be attributed to an internal conversion process from the populated excited states to the hot ground states. The present study provides a more in-depth understanding of the ultrafast excited state dynamics of m-dichlorobenzene.

Reference (29)

Catalog

    /

    返回文章
    返回