Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nanolithography based on two-surface-plasmon-polariton-absorption

Liu Fang Li Yun-Xiang Huang Yi-Dong

Nanolithography based on two-surface-plasmon-polariton-absorption

Liu Fang, Li Yun-Xiang, Huang Yi-Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Lithography is one of most important technologies for fabricating micro- and nano-structures. Limited by the light diffraction limit, it becomes more and more difficult to reduce the feature size of lithography. Surface plasmon polariton (SPP) is due to the interaction between electromagnetic wave and oscillation of free-electron on metal surface. For the shorter wavelength, higher field intensity and abnormal dispersion relation, the SPP would play an important role in breaking through the diffraction limit and realizing nanolithography. In this paper, we theoretically and experimentally study the optical nonlinear effect of SPP (two-SPP-absorption) in the photoresist and its application of nanolithography with large field. First, the concept and features of two-SPP-absorption are introduced. Like two-photo-absorption, the two-SPP-absorption based lithography is able to realize nanopatterns beyond the diffraction limit: 1) the absorption rate quadratically depends on the light intensity, which can further squeeze the exposure spot; 2) the pronounced power threshold provides a possibility for precisely controlling the linewidth by manipulating the illumination power. Nevertheless, unlike the two-photo-absorption lithography which focuses light onto a single spot and scans point by point, the two-SPP-absorption method could obtain the subwavelength field pattern by simply illuminating the plasmonic mask. The subwavelength field pattern due to the short wavelength of SPP would further result in the overcoming-diffraction-limit resist pattern. Besides, the highly concentrated SPP field leads to the strong electromagnetic field enhancement at the metal-dielectric interface, which could reduce the input power density of exposure source or enlarge the exposure area. Then the two-SPP absorption is realized under the illuminations of femtosecond lasers with vacuum wavelengths of 800 nm and 400 nm. Meanwhile, the interference periodic patternis realized and it is observed that the linewidth could be adjusted by controlling the exposure dose. The minimum linewidth of resist pattern is only one tenth of the vacuum wavelength. By utilizing the features of two-SPP-absorption, namely shorter wavelength, enhanced field and threshold effect, the lithography field could be of millimeter size, which is about four to five orders of magnitude larger than the characteristic size of nanostructure. Therefore, this two-SPP-absorption scheme could be used for large-area plasmonic lithography beyond the diffraction limit with the help of various plasmonic structures and modes.
    [1]

    Mack C 2008 Fundamental Principles of Optical Lithography: the Science of Microfabrication (Hoboken: John Wiley Sons)

    [2]

    Bakshi V 2009 EUV Lithography (Vol. 178) (Bellingham: Spie Press)

    [3]

    Cumpston B H, Ananthavel S P, Barlow S, Dyer D L, Ehrlich J E, Erskine L L, Heikal A A, Kuebler S M, Lee I Y S, McCord-Maughon D, Qin J 1999 Nature 398 51

    [4]

    Srituravanich W, Fang N, Sun C, Luo Q, Zhang X 2004 Nano Lett. 4 1085

    [5]

    Chou S Y, Krauss P R, Renstrom P J 1996 J. Vacuum Sci. Technol. B: Microelectr. Nanometer Struct. Process. Measur. Phenom. 14 4129

    [6]

    Zhai T, Zhang X, Pang Z, Dou F 2011 Adv. Mater. 23 1860

    [7]

    Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Reports 408 131

    [8]

    Brongersma M L, Kik P G 2007 Surface Plasmon Nanophotonics. (Berlin: Springer)

    [9]

    Srituravanich W, Durant S, Lee H Sun C, Zhang X 2005 J. Vacuum Sci. Technol. B: Microelectr. Nanometer Struct. Process. Measur. Phenom. 23 2636

    [10]

    Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780

    [11]

    Seo S, Kim, H C, Ko H, Cheng M 2007 J. Vacuum Sci. Technol. B: Microelectr. Nanometer Struct. Process. Measur. Phenom. 25 2271

    [12]

    Srituravanich W, Pan L, Wang Y, Sun C, Bogy D B, Zhang X 2008 Nature Nanotechnol. 3 733

    [13]

    Pan L, Park Y, Xiong Y, Ulin-Avila E, Wang Y, Zeng L, Xiong S, Rho J, Sun C, Bogy D B, Zhang X 2011 Sci. Reports 1 175

    [14]

    Melville D O, Blaikie R J 2005 Opt. Express 13 2127

    [15]

    Sun H B, Kawata S 2004 In NMR3D Analysis Photopolymerization (Berlin: Springer Berlin Heidelberg) pp169-273

    [16]

    Lee K S, Yang D Y, Park S H, Kim R H 2006 Polym. Adv. Technol. 17 72

    [17]

    Park S H, Yang D Y, Lee K S 2009 Laser Photon. Rev. 3 1

    [18]

    Li Y X 2014 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [李云翔 2014 博士学位论文 (北京: 清华大学)]

    [19]

    Bellan P M 2008 Fundamentals of Plasma Physics (Cambridge: Cambridge University Press)

    [20]

    Ritchie R H 1957 Phys. Rev. 106 874

    [21]

    Ponath H E, Stegeman G I 2012 Nonlinear Surface Electromagnetic Phenomena (Vol. 29) (Amsterdam: Elsevier)

    [22]

    Raether H 2013 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer-Verlag Berlin)

    [23]

    Pines D 1956 Rev. Modern Phys. 28 184

    [24]

    Raether H 2006 Excitation of Plasmons and Interband Transitions by Electrons (Vol. 88) (Berlin: Springer)

    [25]

    Chen D Z A 2007 Ph. D. Dissertation (Massachusetts: Massachusetts Institute of Technology)

    [26]

    Hopfield J J 1958 Phys. Rev. 112 1555

    [27]

    Li Y, Liu F, Xiao L, Cui K, Feng X, Zhang W, Huang Y 2013 Appl. Phys. Lett. 102 063113

    [28]

    Palik E D 1998 Handbook of Optical Constants of Solids (Vol. 3) (Cambridge: Academic Press)

    [29]

    Li Y, Liu F, Ye Y, Meng W, Cui K, Feng X, Zhang W, Huang Y 2014 Appl. Phys. Lett. 104 081115

    [30]

    Meng W S 2015 M. S. Dissertation (Beijing: Tsinghua University) (in Chinese) [孟维思 2015 硕士学位论文 (北京: 清华大学)]

    [31]

    Fu Y, Zhou X 2010 Plasmonics 5 287

    [32]

    Carretero-Palacios S, Mahboub O, Garcia-Vidal F J, Martin-Moreno L, Rodrigo S G, Genet C, Ebbesen T W 2011 Opt. Express 19 10429

    [33]

    Gao Y, Gan Q, Bartoli F J 2014 IEEE Photon. J. 6 1

    [34]

    Gao Y, Xin Z, Zeng B, Gan Q, Cheng X, Bartoli F J 2013 Lab on a Chip 13 4755

  • [1]

    Mack C 2008 Fundamental Principles of Optical Lithography: the Science of Microfabrication (Hoboken: John Wiley Sons)

    [2]

    Bakshi V 2009 EUV Lithography (Vol. 178) (Bellingham: Spie Press)

    [3]

    Cumpston B H, Ananthavel S P, Barlow S, Dyer D L, Ehrlich J E, Erskine L L, Heikal A A, Kuebler S M, Lee I Y S, McCord-Maughon D, Qin J 1999 Nature 398 51

    [4]

    Srituravanich W, Fang N, Sun C, Luo Q, Zhang X 2004 Nano Lett. 4 1085

    [5]

    Chou S Y, Krauss P R, Renstrom P J 1996 J. Vacuum Sci. Technol. B: Microelectr. Nanometer Struct. Process. Measur. Phenom. 14 4129

    [6]

    Zhai T, Zhang X, Pang Z, Dou F 2011 Adv. Mater. 23 1860

    [7]

    Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Reports 408 131

    [8]

    Brongersma M L, Kik P G 2007 Surface Plasmon Nanophotonics. (Berlin: Springer)

    [9]

    Srituravanich W, Durant S, Lee H Sun C, Zhang X 2005 J. Vacuum Sci. Technol. B: Microelectr. Nanometer Struct. Process. Measur. Phenom. 23 2636

    [10]

    Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780

    [11]

    Seo S, Kim, H C, Ko H, Cheng M 2007 J. Vacuum Sci. Technol. B: Microelectr. Nanometer Struct. Process. Measur. Phenom. 25 2271

    [12]

    Srituravanich W, Pan L, Wang Y, Sun C, Bogy D B, Zhang X 2008 Nature Nanotechnol. 3 733

    [13]

    Pan L, Park Y, Xiong Y, Ulin-Avila E, Wang Y, Zeng L, Xiong S, Rho J, Sun C, Bogy D B, Zhang X 2011 Sci. Reports 1 175

    [14]

    Melville D O, Blaikie R J 2005 Opt. Express 13 2127

    [15]

    Sun H B, Kawata S 2004 In NMR3D Analysis Photopolymerization (Berlin: Springer Berlin Heidelberg) pp169-273

    [16]

    Lee K S, Yang D Y, Park S H, Kim R H 2006 Polym. Adv. Technol. 17 72

    [17]

    Park S H, Yang D Y, Lee K S 2009 Laser Photon. Rev. 3 1

    [18]

    Li Y X 2014 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [李云翔 2014 博士学位论文 (北京: 清华大学)]

    [19]

    Bellan P M 2008 Fundamentals of Plasma Physics (Cambridge: Cambridge University Press)

    [20]

    Ritchie R H 1957 Phys. Rev. 106 874

    [21]

    Ponath H E, Stegeman G I 2012 Nonlinear Surface Electromagnetic Phenomena (Vol. 29) (Amsterdam: Elsevier)

    [22]

    Raether H 2013 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer-Verlag Berlin)

    [23]

    Pines D 1956 Rev. Modern Phys. 28 184

    [24]

    Raether H 2006 Excitation of Plasmons and Interband Transitions by Electrons (Vol. 88) (Berlin: Springer)

    [25]

    Chen D Z A 2007 Ph. D. Dissertation (Massachusetts: Massachusetts Institute of Technology)

    [26]

    Hopfield J J 1958 Phys. Rev. 112 1555

    [27]

    Li Y, Liu F, Xiao L, Cui K, Feng X, Zhang W, Huang Y 2013 Appl. Phys. Lett. 102 063113

    [28]

    Palik E D 1998 Handbook of Optical Constants of Solids (Vol. 3) (Cambridge: Academic Press)

    [29]

    Li Y, Liu F, Ye Y, Meng W, Cui K, Feng X, Zhang W, Huang Y 2014 Appl. Phys. Lett. 104 081115

    [30]

    Meng W S 2015 M. S. Dissertation (Beijing: Tsinghua University) (in Chinese) [孟维思 2015 硕士学位论文 (北京: 清华大学)]

    [31]

    Fu Y, Zhou X 2010 Plasmonics 5 287

    [32]

    Carretero-Palacios S, Mahboub O, Garcia-Vidal F J, Martin-Moreno L, Rodrigo S G, Genet C, Ebbesen T W 2011 Opt. Express 19 10429

    [33]

    Gao Y, Gan Q, Bartoli F J 2014 IEEE Photon. J. 6 1

    [34]

    Gao Y, Xin Z, Zeng B, Gan Q, Cheng X, Bartoli F J 2013 Lab on a Chip 13 4755

  • [1] Hong Xiao-Gang, Xu Wen-Dong, Li Xiao-Gang, Zhao Cheng-Qiang, Tang Xiao-Dong. Numerical simulation of probe induced surface plasmon resonance coupling nanolithography. Acta Physica Sinica, 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [2] Huang Qian, Xiong Shao-Zhen, Zhao Ying, Zhang Xiao-Dan. Nonlinear phenomenon of surface enhanced Raman scattering caused by surface plasmon. Acta Physica Sinica, 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [3] Tong Jian-Bo, Huang Qian, Zhang Xiao-Dan, Zhang Cun-Shan, Zhao Ying. Effect of surface plasmon polariton of Ag nanoparticles on the photoluminescence property of up-conversion materials. Acta Physica Sinica, 2012, 61(4): 047801. doi: 10.7498/aps.61.047801
    [4] Liu Fa-Min, Wang Tian-Min, Zhang Li-De. . Acta Physica Sinica, 2002, 51(1): 183-186. doi: 10.7498/aps.51.183
    [5] Sun Yue,  Qu Bin,  Quan Bao-Gang. Nonlinear absorption, nonlinear scattering, and optical limiting properties of carbon nanotube/molybdenum diselenide organic glass. Acta Physica Sinica, 2018, 67(23): 236201. doi: 10.7498/aps.67.20181583
    [6] Zheng Jun-Juan, Sun Gang. Optical properties of surface plasmons induced by the plan of a periodically arranged dielectric spheres on the metal slab. Acta Physica Sinica, 2005, 54(11): 5210-5217. doi: 10.7498/aps.54.5210
    [7] Zhou Zhen-Ting, Yang Li, Yao Jie, Ye Ran, Xu Huan-Huan, Ye Yong-Hong. Fabrication of multilayer metal-dielectric nanoparticles and their optical properties. Acta Physica Sinica, 2013, 62(18): 188104. doi: 10.7498/aps.62.188104
    [8] Pu Ming-Bo, Wang Chang-Tao, Wang Yan-Qin, Luo Xian-Gang. Subwavelength electromagnetics below the diffraction limit. Acta Physica Sinica, 2017, 66(14): 144101. doi: 10.7498/aps.66.144101
    [9] Hu Rui-Xuan, Pan Bing-Yang, Yang Yu-Long, Zhang Wei-Hua. Brief retrospect of super-resolution optical microscopy techniques. Acta Physica Sinica, 2017, 66(14): 144209. doi: 10.7498/aps.66.144209
    [10] Huang Qian, Zhang De-Kun, Xiong Shao-Zhen, Zhao Ying, Zhang Xiao-Dan. Research on reduction of parasitic absorption caused by surface plasmon polariton. Acta Physica Sinica, 2012, 61(21): 217301. doi: 10.7498/aps.61.217301
    [11] Wang Wu-Song, Zhang Li-Wei, Ran Jia, Zhang Ye-Wen. Experimental studies of the surface plasmon polaritons waveguide filter in microwave band. Acta Physica Sinica, 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [12] Wu Qing-Jun, Wu Fan, Sun Li-Bin, Hu Xiao-Lin, Ye Ming, Xu Yue, Shi Bin, Xie Hao, Xia Juan, Jiang Jian-Zhong, Zhang Dong-Xian. Ultrathin metallic subtractive color filters based on surface plasmon primitives. Acta Physica Sinica, 2014, 63(20): 207801. doi: 10.7498/aps.63.207801
    [13] Song Guo-Feng, Wang Wei-Min, Cai Li-Kang, Guo Bao-Shan, Wang Qing, Xu Yun, Wei Xin, Liu Yun-Tao. Sub-wavelength beam lasers with surface plasmon structures. Acta Physica Sinica, 2010, 59(7): 5105-5109. doi: 10.7498/aps.59.5105
    [14] Geng Yi-Fei, Wang Zhu-Ning, Ma Yao-Guang, Gao Fei. Topological surface plasmon polaritons. Acta Physica Sinica, 2019, 68(22): 224101. doi: 10.7498/aps.68.20191085
    [15] Yu Ben-Hai, Dai Neng-Li, Wang Ying, Li Yu-Hua, Ji Ling-Ling, Zheng Qi-Guang, Lu Pei-Xiang. Morphology and mechanism of femtosecond laser-induced structural changes in lithium niobate crystal. Acta Physica Sinica, 2007, 56(10): 5821-5826. doi: 10.7498/aps.56.5821
    [16] Liu Hong-Ji, Liu Shuang-Long, Niu Han-Ben, Chen Dan-Ni, Liu Wei. A super-resolution infrared microscopy based on a doughnut pump beam. Acta Physica Sinica, 2016, 65(23): 233601. doi: 10.7498/aps.65.233601
    [17] Lin Dan-Ying, Qu Jun-Le. Recent progress on super-resolution imaging and correlative super-resolution microscopy. Acta Physica Sinica, 2017, 66(14): 148703. doi: 10.7498/aps.66.148703
    [18] Yang Fu-Zi. From plasmon to nanoplasmonics-the frontiers of modern photonics and the role of liquid crystals in tuneable nanoplasmonics. Acta Physica Sinica, 2015, 64(12): 124214. doi: 10.7498/aps.64.124214
    [19] Chen Ying, Cao Jing-Gang, Xie Jin-Chao, Gao Xin-Bei, Xu Yang-Mei, Li Shao-Hua. Resonance characteristics of independently tuned dual Fano of metal-dielectric-metal waveguide coupling square cavity with double baffles. Acta Physica Sinica, 2019, 68(10): 107302. doi: 10.7498/aps.68.20181985
    [20] Zheng Jun-Juan, Sun Gang. Transmission properties of the system of dielectric spheres periodically mounted in a metal slab. Acta Physica Sinica, 2010, 59(6): 4008-4013. doi: 10.7498/aps.59.4008
  • Citation:
Metrics
  • Abstract views:  1175
  • PDF Downloads:  304
  • Cited By: 0
Publishing process
  • Received Date:  19 June 2017
  • Accepted Date:  05 July 2017
  • Published Online:  05 July 2017

Nanolithography based on two-surface-plasmon-polariton-absorption

Fund Project:  Project supported by the National Basic Research Programs of China (Grant No. 2013CBA01704) and the National Natural Science Foundation of China (Grant Nos. 61575104, 61621064).

Abstract: Lithography is one of most important technologies for fabricating micro- and nano-structures. Limited by the light diffraction limit, it becomes more and more difficult to reduce the feature size of lithography. Surface plasmon polariton (SPP) is due to the interaction between electromagnetic wave and oscillation of free-electron on metal surface. For the shorter wavelength, higher field intensity and abnormal dispersion relation, the SPP would play an important role in breaking through the diffraction limit and realizing nanolithography. In this paper, we theoretically and experimentally study the optical nonlinear effect of SPP (two-SPP-absorption) in the photoresist and its application of nanolithography with large field. First, the concept and features of two-SPP-absorption are introduced. Like two-photo-absorption, the two-SPP-absorption based lithography is able to realize nanopatterns beyond the diffraction limit: 1) the absorption rate quadratically depends on the light intensity, which can further squeeze the exposure spot; 2) the pronounced power threshold provides a possibility for precisely controlling the linewidth by manipulating the illumination power. Nevertheless, unlike the two-photo-absorption lithography which focuses light onto a single spot and scans point by point, the two-SPP-absorption method could obtain the subwavelength field pattern by simply illuminating the plasmonic mask. The subwavelength field pattern due to the short wavelength of SPP would further result in the overcoming-diffraction-limit resist pattern. Besides, the highly concentrated SPP field leads to the strong electromagnetic field enhancement at the metal-dielectric interface, which could reduce the input power density of exposure source or enlarge the exposure area. Then the two-SPP absorption is realized under the illuminations of femtosecond lasers with vacuum wavelengths of 800 nm and 400 nm. Meanwhile, the interference periodic patternis realized and it is observed that the linewidth could be adjusted by controlling the exposure dose. The minimum linewidth of resist pattern is only one tenth of the vacuum wavelength. By utilizing the features of two-SPP-absorption, namely shorter wavelength, enhanced field and threshold effect, the lithography field could be of millimeter size, which is about four to five orders of magnitude larger than the characteristic size of nanostructure. Therefore, this two-SPP-absorption scheme could be used for large-area plasmonic lithography beyond the diffraction limit with the help of various plasmonic structures and modes.

Reference (34)

Catalog

    /

    返回文章
    返回