Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Attosecond X-ray generation driven by the relativistic laser pulse based on the semi-analytical self-consistent theory

Wang Shao-Yi Tan Fang Wu Yu-Chi Fan Quan-Ping Jiao Jin-Long Dong Ke-Gong Qian Feng Cao Lei-Feng Gu Yu-Qiu

Attosecond X-ray generation driven by the relativistic laser pulse based on the semi-analytical self-consistent theory

Wang Shao-Yi, Tan Fang, Wu Yu-Chi, Fan Quan-Ping, Jiao Jin-Long, Dong Ke-Gong, Qian Feng, Cao Lei-Feng, Gu Yu-Qiu
PDF
Get Citation
  • A semi-analytical theory of the interaction between a relativistic laser pulse and the overdense plasma to generate an attosecond X-ray source is presented.The physical parameters such as plasma oscillation trajectory,surface electric field and magnetic field can be given by this model,and the high-order harmonic spectrum is also calculated accurately from the solution of the plasma surface oscillations,the obtained result is consistent with the result from the PIC simulation program.This model can be valid for arbitrary laser duration,solid densities,and a large set of laser peak intensities (1018-1021 W/cm2).In addition,the model is not applicable for the small laser focal spots (less than ten times the laser wavelength),although two-dimensional effects such as the pulse finite size may significantly change the movement progress of the electrons,the laser spot can be larger than ten times the laser wavelength under the general laboratory conditions. In this model,the laser energy absorption is small,and the electron kinetic pressure is also small.Due to the radiation pressure of the laser pulse,the electrons are pushed into the solid,forming a very steep density profile.As a result,the relevant forces makes the electrons ponderomotive and the longitudinal electric field is caused by the strong electric charge separation effect.This semi-analytical self-consistent theory can give us a reasonable physical description, and the momentum equation and the continuity equation of the electric and magnetic field at the boundary allow us to determine the plasma surface oscillations.The spatiotemporal characteristics of the reflected magnetic and electric field at the boundary can allow us to determine the emitting characteristics of the high order harmonic. Our results show that the radiation of the attosecond X-ray source is dependent on the plasma surface oscillation. The plasma surface oscillates with a duration about twice the laser optical cycle,and the high-order harmonics also emit twice the laser optical cycle,thus an attosecond pulse train driven by the multi-cycle laser pulse can be formed.By using a few-cycle laser field,the smooth high-order harmonics can be obtained,which leads to a single attosecond pulse with high signal-to-noise ratio.In a word,our calculation results show that the time evolution progress of plasma surface can be controlled by changing the carrier envelope phase of the few-cycle laser pulse,and then the radiation progress of the high-order harmonics can be influenced as result of a single attosecond X-ray pulse.
      Corresponding author: Wu Yu-Chi, wuyc@caep.cn
    • Funds: Project supported by the National Science Instruments Major Project of China (Grant No. 2012YQ130125), the National Natural Science Foundation of China (Grant Nos. 11405159, 11375161, 11174259), the Joint Funds of the National Natural Science Foundation of China (Grant No. U1630246), the President Foundation of China Academy of Engineering Physics (Grant No. 2014-1-017), the Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2015B0401090), the Key Laboratory Foundation of the Sciences and Technology on Plasma Physics Laboratory, China (Grant No. 9140C680302130C68242), and the National Key Research and Development Technology Project of China (Grant No. 2016YFA0401100).
    [1]

    Bartels R A, Paul A, Green H, Kapteyn H C, Murnane M M, Backus S, Christov I P, Liu Y, Attwood D, Jacobsen C 2002 Science 297 376

    [2]

    Rundquist A, Durfee Ⅲ C G, Chang Z, Herne C, Backus S, Murnane M M, Kapteyn H C 1998 Science 280 1412

    [3]

    Kling M F, Siedschlag C, Verhoef A J, Khan J I, Schultze M, Uphues Th, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking M J J 2006 Science 312 246

    [4]

    Zhou Y M, Huang C, Liao Q, Lu P X 2012 Phys. Rev. Lett. 107 053004

    [5]

    Qiao B, Zepf M, Borghesi M, Geissler M 2009 Phys. Rev. Lett. 102 145002

    [6]

    Faure J, Glinec Y, Pukhov A, et al. 2004 Nature 431 541

    [7]

    Chen L M, Liu F, Wang M, et al. 2010 Phys. Rev. Lett. 104 215004

    [8]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [9]

    Pfeifer T, Gallmann L, Abel M J, Nagel P M, Neumark D M, Leone S R 2006 Phys. Rev. Lett. 97 163901

    [10]

    Lan P, Lu P, Cao W, Wang X 2007 Phys. Rev. A 76 043808

    [11]

    Christov I P, Murnane M M, Kapteyn H C 1997 Phys. Rev. Lett. 78 1251

    [12]

    Wang S, Hong W, Lan P, Zhang Q, Lu P 2009 J. Phys. B 42 105601

    [13]

    Zhang Q, Lu P, Lan P, Hong W, Yang Z 2008 Opt. Express 16 9795

    [14]

    Zeng Z, Zheng Y, Cheng Y, Li R, Xu Z 2012 J. Phys. B 45 074004

    [15]

    Zhang Q, He L, Lan P, Lu P 2014 Opt. Express 22 13213

    [16]

    Wei P, Miao J, Zeng Z, Li C, Ge X, Li R, Xu Z 2013 Phys. Rev. Lett. 110 233903

    [17]

    Zhong H Y, Guo J, Zhang H D, Du H, Liu H X 2015 Chin. Phys. B 24 073202

    [18]

    Lewenstein M, Balcou P, Ivanov M Yu, L' Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117

    [19]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [20]

    Zhao K, Zhang Q, Chini M, et al. 2012 Opt. Lett. 37 3891

    [21]

    Dromey B, Zepf M, Gopal A, Lancaster K, Wel M S, Krushelnick K, Tatarakis M, Vakakis, Moustaizis S, Kodama R, Tampo M, Stoeckl C, Clarke R, Habara H, Neely D, Karsch S, Norreys P 2006 Nat. Phys. 2 456

    [22]

    Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B, Reis D A 2016 Nature 534 520

    [23]

    Pan K Q, Zheng C Y, He X T 2016 Phys. Plasma 23 023109

    [24]

    Bai Y L, Zhang Q J, Tian M, Cui C H 2013 Acta Phys. Sin. 62 125206 (in Chinese)[白易灵, 张秋菊, 田密, 崔春红2013物理学报62 125206]

    [25]

    Zhang X M, Shen B F, Shi Y, Wang X F, Zhang L, Wang W P, Xu J C, Yi L Q, Xu Z Z 2015 Phys. Rev. Lett. 14 173901

    [26]

    Qur F, Thaury C, Monot P, Dobosz S, Martin P, Geindre J P, Audebert P 2006 Phys. Rev. Lett. 96 125004

    [27]

    Zhang Q J, Sheng Z M, Zhang J 2003 Acta Phys. Sin. 53 2180 (in Chinese)[张秋菊, 盛政明, 张杰2003物理学报53 2180]

    [28]

    Li K, Zhang J, Yu W 2003 Acta Phys. Sin. 52 1412 (in Chinese)[李昆, 张杰, 余玮2003物理学报52 1412]

    [29]

    Bulanov S V, Naumova N M, Pegoraro F 1994 Phys. Plasmas 1 745

    [30]

    Baeva T, Gordienko S, Robinson A P L, Norreys P A 2011 Phys. Plasma 18 056702

    [31]

    Liu J S, Xia C, Liu L, Li R X, Xu Z Z 2009 Laser Particale Beams 27 365

    [32]

    Sanz J, Debale A, Mima K 2012 Phys. Rev. E 85 046411

    [33]

    Debale A, Sanz J, Gremillet L, Mima K 2013 Phys. Plasmas 20 053107

    [34]

    Debayle A, Sanz J, Gremiller L 2015 Phys. Rev. E 92 053108

  • [1]

    Bartels R A, Paul A, Green H, Kapteyn H C, Murnane M M, Backus S, Christov I P, Liu Y, Attwood D, Jacobsen C 2002 Science 297 376

    [2]

    Rundquist A, Durfee Ⅲ C G, Chang Z, Herne C, Backus S, Murnane M M, Kapteyn H C 1998 Science 280 1412

    [3]

    Kling M F, Siedschlag C, Verhoef A J, Khan J I, Schultze M, Uphues Th, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking M J J 2006 Science 312 246

    [4]

    Zhou Y M, Huang C, Liao Q, Lu P X 2012 Phys. Rev. Lett. 107 053004

    [5]

    Qiao B, Zepf M, Borghesi M, Geissler M 2009 Phys. Rev. Lett. 102 145002

    [6]

    Faure J, Glinec Y, Pukhov A, et al. 2004 Nature 431 541

    [7]

    Chen L M, Liu F, Wang M, et al. 2010 Phys. Rev. Lett. 104 215004

    [8]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [9]

    Pfeifer T, Gallmann L, Abel M J, Nagel P M, Neumark D M, Leone S R 2006 Phys. Rev. Lett. 97 163901

    [10]

    Lan P, Lu P, Cao W, Wang X 2007 Phys. Rev. A 76 043808

    [11]

    Christov I P, Murnane M M, Kapteyn H C 1997 Phys. Rev. Lett. 78 1251

    [12]

    Wang S, Hong W, Lan P, Zhang Q, Lu P 2009 J. Phys. B 42 105601

    [13]

    Zhang Q, Lu P, Lan P, Hong W, Yang Z 2008 Opt. Express 16 9795

    [14]

    Zeng Z, Zheng Y, Cheng Y, Li R, Xu Z 2012 J. Phys. B 45 074004

    [15]

    Zhang Q, He L, Lan P, Lu P 2014 Opt. Express 22 13213

    [16]

    Wei P, Miao J, Zeng Z, Li C, Ge X, Li R, Xu Z 2013 Phys. Rev. Lett. 110 233903

    [17]

    Zhong H Y, Guo J, Zhang H D, Du H, Liu H X 2015 Chin. Phys. B 24 073202

    [18]

    Lewenstein M, Balcou P, Ivanov M Yu, L' Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117

    [19]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [20]

    Zhao K, Zhang Q, Chini M, et al. 2012 Opt. Lett. 37 3891

    [21]

    Dromey B, Zepf M, Gopal A, Lancaster K, Wel M S, Krushelnick K, Tatarakis M, Vakakis, Moustaizis S, Kodama R, Tampo M, Stoeckl C, Clarke R, Habara H, Neely D, Karsch S, Norreys P 2006 Nat. Phys. 2 456

    [22]

    Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B, Reis D A 2016 Nature 534 520

    [23]

    Pan K Q, Zheng C Y, He X T 2016 Phys. Plasma 23 023109

    [24]

    Bai Y L, Zhang Q J, Tian M, Cui C H 2013 Acta Phys. Sin. 62 125206 (in Chinese)[白易灵, 张秋菊, 田密, 崔春红2013物理学报62 125206]

    [25]

    Zhang X M, Shen B F, Shi Y, Wang X F, Zhang L, Wang W P, Xu J C, Yi L Q, Xu Z Z 2015 Phys. Rev. Lett. 14 173901

    [26]

    Qur F, Thaury C, Monot P, Dobosz S, Martin P, Geindre J P, Audebert P 2006 Phys. Rev. Lett. 96 125004

    [27]

    Zhang Q J, Sheng Z M, Zhang J 2003 Acta Phys. Sin. 53 2180 (in Chinese)[张秋菊, 盛政明, 张杰2003物理学报53 2180]

    [28]

    Li K, Zhang J, Yu W 2003 Acta Phys. Sin. 52 1412 (in Chinese)[李昆, 张杰, 余玮2003物理学报52 1412]

    [29]

    Bulanov S V, Naumova N M, Pegoraro F 1994 Phys. Plasmas 1 745

    [30]

    Baeva T, Gordienko S, Robinson A P L, Norreys P A 2011 Phys. Plasma 18 056702

    [31]

    Liu J S, Xia C, Liu L, Li R X, Xu Z Z 2009 Laser Particale Beams 27 365

    [32]

    Sanz J, Debale A, Mima K 2012 Phys. Rev. E 85 046411

    [33]

    Debale A, Sanz J, Gremillet L, Mima K 2013 Phys. Plasmas 20 053107

    [34]

    Debayle A, Sanz J, Gremiller L 2015 Phys. Rev. E 92 053108

  • [1] Zeng Zhi-Nan, Li Ru-Xin, Xie Xin-Hua, Xu Zhi-Zhan. High-order harmonic attosecond pulses driven by a two-pulse laser. Acta Physica Sinica, 2004, 53(7): 2316-2319. doi: 10.7498/aps.53.2316
    [2] Zhang Qiu-Ju, Sheng Zheng-Ming, Zhang Jie. Redshift of harmonics by laser interaction with solid target. Acta Physica Sinica, 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [3] Li Peng-Cheng, Zhou Xiao-Xin, Li Hui-Shan. Role of potential function in high order harmonic generation of model hydrogen atoms in intense laser field. Acta Physica Sinica, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [4] Yang Hai-Yan, Wang Zhen-Yu, Li Ying-Zi, Zhang Wei-Ran, Qian Jian-Qiang. Investigation of enhancing higher harmonics by changing the shape of atomic force microscope cantilever. Acta Physica Sinica, 2013, 62(20): 200703. doi: 10.7498/aps.62.200703
    [5] Gu Bin, Cui Lei, Teng Yu-Yong, Hu Yong-Jin, Zhao Jiang, Zeng Xiang-Hua. Effect of different laser polarization direction on high order harmonic generation of nitrogen molecule——A simulation via TDDFT. Acta Physica Sinica, 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [6] Wang Xiao-Juan, Cui Lei, Wang Fan, Zeng Xiang-Hua. Effect of laser polarization direction on high order harmonic generation of oxygen molecule——A simulation via TDDFT. Acta Physica Sinica, 2010, 59(1): 317-321. doi: 10.7498/aps.59.317
    [7] Cheng Chun-Zhi, Zhou Xiao-Xin, Li Peng-Cheng. The wavelength dependence of high-order harmonic generationand attosecond pulses from atom in infrared laser field. Acta Physica Sinica, 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [8] Luo Xiang-Yi, Ben Shuai, Ge Xin-Lei, Wang Qun, Guo Jing, Liu Xue-Shen. High-order harmonics and attosecond pulse generation of a He+ ion by a chirped two-color inhomogeneous laser field. Acta Physica Sinica, 2015, 64(19): 193201. doi: 10.7498/aps.64.193201
    [9] Zhang Feng-Shou, Cui Lei, Zeng Xiang-Hua, Gu Bin. High-order harmonic generation of hydrogen molecule irradiated by ultra-strong femto-second laser pulse——a simulation via TDDFT. Acta Physica Sinica, 2006, 55(6): 2972-2976. doi: 10.7498/aps.55.2972
    [10] Lu Fa-Ming, Xia Yuan-Qin, Zhang Sheng, Chen De-Ying. Investigation of tunable coherent XUV light source by high harmonics generation using intense femtosecond laser pulses in Ne. Acta Physica Sinica, 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [11] Yu We, Li Kun, Zhang Jie. High-order harmonic generation by laser interaction with solid target using movi ng mirror model. Acta Physica Sinica, 2003, 52(6): 1412-1417. doi: 10.7498/aps.52.1412
    [12] Liu Yang-Yang, Zhao Kun, He Peng, Jiang Yu-Jiao, Huang Hang-Dong, Teng Hao, Wei Zhi-Yi. High harmonic generation experiments based on solid-state supercontinuum. Acta Physica Sinica, 2017, 66(13): 134207. doi: 10.7498/aps.66.134207
    [13] Wang Li-Feng, He Xin-Kui, Teng Hao, Yun Chen-Xia, Zhang Wei, Wei Zhi-Yi. Tunable optimization of high-order harmonic generation driven by 5 fs laser pulses. Acta Physica Sinica, 2014, 63(22): 224103. doi: 10.7498/aps.63.224103
    [14] Li Gui-Hua, Xie Hong-Qiang, Yao Jin-Ping, Chu Wei, Cheng Ya, Liu Xiao-Jun, Chen Jing, Xie Xin-Hua. Signature of multi-channel interference in high-order harmonic generation from N2 driven by intense mid-infrared pulses. Acta Physica Sinica, 2016, 65(22): 224208. doi: 10.7498/aps.65.224208
    [15] Zhao Song-Feng, Jin Cheng, Zhou Xiao-Xin. Investigation of high order harmonic generation and ionization of model hydrogen atoms and real hydrogen atom in intense laser field. Acta Physica Sinica, 2006, 55(8): 4078-4085. doi: 10.7498/aps.55.4078
    [16] Zhang Chun-Li, Feng Zhi-Bo, Qi Yue-Ying, Che Ji-Xin. High order harmonic generation from a two-dimensional model H atom in arbitrary polarized laser. Acta Physica Sinica, 2011, 60(8): 083201. doi: 10.7498/aps.60.083201
    [17] Zeng Si-Liang, Chen Gao, Yang Yu-Jun, Zhu Qi-Ren, Chen Ji-Gen. Effect of the carrier phase of ultra-short laser pulses on high-order harmonic generation spectra. Acta Physica Sinica, 2008, 57(7): 4104-4109. doi: 10.7498/aps.57.4104
    [18] Liu Shuo, Chen Gao, Zhu Qi-Ren, Chen Ji-Gen. Increasing line-density of high-order harmonic generation spectra with bichromatic fields. Acta Physica Sinica, 2009, 58(3): 1574-1578. doi: 10.7498/aps.58.1574
    [19] Cao Wei, Lan Peng-Fei, Lu Pei-Xiang. Proposal for single attosecond pulse production with a 43 fs super intense laser pulse. Acta Physica Sinica, 2007, 56(3): 1608-1612. doi: 10.7498/aps.56.1608
    [20] Ye Xiao-Liang, Zhao Song-Feng, Li Peng-Cheng, Zhou Xiao-Xin. The single attosecond pulse generated by atom exposed to two-color combined laser field. Acta Physica Sinica, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
  • Citation:
Metrics
  • Abstract views:  122
  • PDF Downloads:  106
  • Cited By: 0
Publishing process
  • Received Date:  18 April 2017
  • Accepted Date:  01 June 2017
  • Published Online:  20 October 2017

Attosecond X-ray generation driven by the relativistic laser pulse based on the semi-analytical self-consistent theory

    Corresponding author: Wu Yu-Chi, wuyc@caep.cn
  • 1. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China;
  • 2. Key Laboratory of Sciences and Technology on Plasma Physics, China Academy of Engineering Physics, Mianyang 621900, China;
  • 3. IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
Fund Project:  Project supported by the National Science Instruments Major Project of China (Grant No. 2012YQ130125), the National Natural Science Foundation of China (Grant Nos. 11405159, 11375161, 11174259), the Joint Funds of the National Natural Science Foundation of China (Grant No. U1630246), the President Foundation of China Academy of Engineering Physics (Grant No. 2014-1-017), the Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2015B0401090), the Key Laboratory Foundation of the Sciences and Technology on Plasma Physics Laboratory, China (Grant No. 9140C680302130C68242), and the National Key Research and Development Technology Project of China (Grant No. 2016YFA0401100).

Abstract: A semi-analytical theory of the interaction between a relativistic laser pulse and the overdense plasma to generate an attosecond X-ray source is presented.The physical parameters such as plasma oscillation trajectory,surface electric field and magnetic field can be given by this model,and the high-order harmonic spectrum is also calculated accurately from the solution of the plasma surface oscillations,the obtained result is consistent with the result from the PIC simulation program.This model can be valid for arbitrary laser duration,solid densities,and a large set of laser peak intensities (1018-1021 W/cm2).In addition,the model is not applicable for the small laser focal spots (less than ten times the laser wavelength),although two-dimensional effects such as the pulse finite size may significantly change the movement progress of the electrons,the laser spot can be larger than ten times the laser wavelength under the general laboratory conditions. In this model,the laser energy absorption is small,and the electron kinetic pressure is also small.Due to the radiation pressure of the laser pulse,the electrons are pushed into the solid,forming a very steep density profile.As a result,the relevant forces makes the electrons ponderomotive and the longitudinal electric field is caused by the strong electric charge separation effect.This semi-analytical self-consistent theory can give us a reasonable physical description, and the momentum equation and the continuity equation of the electric and magnetic field at the boundary allow us to determine the plasma surface oscillations.The spatiotemporal characteristics of the reflected magnetic and electric field at the boundary can allow us to determine the emitting characteristics of the high order harmonic. Our results show that the radiation of the attosecond X-ray source is dependent on the plasma surface oscillation. The plasma surface oscillates with a duration about twice the laser optical cycle,and the high-order harmonics also emit twice the laser optical cycle,thus an attosecond pulse train driven by the multi-cycle laser pulse can be formed.By using a few-cycle laser field,the smooth high-order harmonics can be obtained,which leads to a single attosecond pulse with high signal-to-noise ratio.In a word,our calculation results show that the time evolution progress of plasma surface can be controlled by changing the carrier envelope phase of the few-cycle laser pulse,and then the radiation progress of the high-order harmonics can be influenced as result of a single attosecond X-ray pulse.

Reference (34)

Catalog

    /

    返回文章
    返回