Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Near-field character and improvement technology of induced spatial incoherence

Li Fu-Jian Gao Yan-Qi Zhao Xiao-Hui Ji Lai-Lin Wang Wei Huang Xiu-Guang Ma Wei-Xin Sui Zhan Pei Wen-Bing

Near-field character and improvement technology of induced spatial incoherence

Li Fu-Jian, Gao Yan-Qi, Zhao Xiao-Hui, Ji Lai-Lin, Wang Wei, Huang Xiu-Guang, Ma Wei-Xin, Sui Zhan, Pei Wen-Bing
PDF
Get Citation
  • Induced spatial incoherence technology is a beam-smoothing method with its own unique advantages for laser driven inertial confinement fusion. However, simply using the induced spatial incoherent method will induce a strong near-field intensity spatial modulation, which will threaten the safety of the operation and severely limit the maximum output capability of the device. This is also one of the main technical obstacles to applying induced spatial incoherence to a high-power laser device used for fusion. In this paper, a technique of smoothing the near-field spatial intensity modulation caused by induced spatial incoherence is introduced. By using a two-lens filter system, a homogeneous and stable near-field intensity distribution can be obtained on the premise of reserving the innate advantages of induced spatial incoherence (better far-field smoothing characteristics), thereby avoiding the damage to devices and limitation to output capacity in high power laser system using induced spatial incoherence. Based on the theoretical modeling and numerical analysis, using modulation degree, softening factor, and transmittance as evaluation parameters, the near-field light characters with three kinds of filter apertures, such as square, round, and Gaussian, are compared and analyzed. Finally, in a typical optimization result there are used 16×16 induced spatial incoherent divisions and a square aperture with 0.8 times diffraction limit width. In this case, the near-field intensity distribution is uniform, and at the same time, good smoothing effect on far-field and a high energy utilization rate are ensured. On this basis, according to the actual application of the device, the influence of the collimation error on the near-field intensity distribution is further analyzed. The results show that as long as the collimation error is less than 0.1 times the diffraction limit, the near-field quality will not be affected. The simulation analysis of the focal spot obtained by induced spatial incoherence shows that the addition of the filtering system can further improve the low frequency uniformity of the focal spot.
      Corresponding author: Gao Yan-Qi, liufenggyq@siom.ac.cn
    • Funds: Project supported by the Science Challenge Project, China (Grant No. TZ2016005) and the National Natural Science Foundation of China (Grant Nos. 1263236, 0968895, 1102301, 11404308).
    [1]

    Deng B Q, Li Z X, Li C Y, Feng K M 2011 Nucl. Fusion 51 073041

    [2]

    Atzeni S, Meyertervehn J 2004 The Physics of Inertial Fusion:Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford:Clarendon Press)

    [3]

    Lehmberg R, Obenschain S 1983 Opt. Commun. 46 27

    [4]

    Lehmberg R, Schmitt A, Bodner S 1987 J. Appl. Phys. 62 2680

    [5]

    Grun J, Emery M H, Manka C K, Lee T N, Mclean E A, Mostovych A, Stamper J, Bodner S, Obenschain S P, Ripin B H 1987 Phys. Rev. Lett. 58 2672

    [6]

    Obenschain S P, Bodner S E, Colombant D, Gerber K, Lehmberg R H, McLean E A, Mostovych A N, Pronko M S, Pawley C J, Schmitt A J, Sethian J D, Serlin V, Stamper J A, Sullivan C A, Dahlburg J P, Gardner J H, Chan Y, Deniz A V, Hardgrove J, Lehecka T, Klapisch M 1996 Phys. Plasmas 3 2098

    [7]

    Donnat P, Gouedard C, Veron D, Bonville O, Sauteret C, Migus A 1992 Opt. Lett. 17 331

    [8]

    Goodman J W (translated by Qing K C, Liu P S, Cao Q Z, Zhan D S) 1992 Statistical Optics (Beijing:Science Press) p41 (in Chinese)[顾德门 J W 著 (秦克诚, 刘培森, 曹其智, 詹达三 译) 1992 统计光学(北京:科学出版社)第41页]

    [9]

    Dainty J C 2013 Laser Speckle and Related Phenomena (Berlin:Springer science & business Media) p19

    [10]

    Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M 1984 Phys. Rev. Lett. 53 1057

    [11]

    Marozas J A 2007 J. Opt. Soc. Am. A 24 74

    [12]

    Li P, Wang W, Zhao R C, Geng Y C, Jia H T, Su J Q 2014 Acta Phys. Sin. 63 215202 (in Chinese)[李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦 2014 物理学报 63 215202]

    [13]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [14]

    Rothenberg J E 1995 Solid State Lasers for Application to Inertial Confinement Fusion (ICF) 2633 634

    [15]

    Jiang X J, Li J H, Wu R, Zhu Z T, Zhou S L, Lin Z Q 2013 J. Opt. Soc. Am. A 30 2162

    [16]

    Afeyan B, Huller S 2013 arXiv:1304.3960[physics. plasm-ph]

    [17]

    Albright B J, Yin L, Afeyan B 2014 Phys. Rev. Lett. 113 045002

    [18]

    Regan S P, Marozas J A, Kelly J H, Boehly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W 2000 J. Opt. Soc. Am. B 17 1483

    [19]

    Goodman J W 1996 Introduction to Fourier Optics (New York:The McGraw-Hill Companies) p66

    [20]

    Schmidt J D 2010 Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (Washington:SPIE) p124

    [21]

    Eimerl D, Milam D, Yu J 1993 Phys. Rev. Lett. 70 2738

  • [1]

    Deng B Q, Li Z X, Li C Y, Feng K M 2011 Nucl. Fusion 51 073041

    [2]

    Atzeni S, Meyertervehn J 2004 The Physics of Inertial Fusion:Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford:Clarendon Press)

    [3]

    Lehmberg R, Obenschain S 1983 Opt. Commun. 46 27

    [4]

    Lehmberg R, Schmitt A, Bodner S 1987 J. Appl. Phys. 62 2680

    [5]

    Grun J, Emery M H, Manka C K, Lee T N, Mclean E A, Mostovych A, Stamper J, Bodner S, Obenschain S P, Ripin B H 1987 Phys. Rev. Lett. 58 2672

    [6]

    Obenschain S P, Bodner S E, Colombant D, Gerber K, Lehmberg R H, McLean E A, Mostovych A N, Pronko M S, Pawley C J, Schmitt A J, Sethian J D, Serlin V, Stamper J A, Sullivan C A, Dahlburg J P, Gardner J H, Chan Y, Deniz A V, Hardgrove J, Lehecka T, Klapisch M 1996 Phys. Plasmas 3 2098

    [7]

    Donnat P, Gouedard C, Veron D, Bonville O, Sauteret C, Migus A 1992 Opt. Lett. 17 331

    [8]

    Goodman J W (translated by Qing K C, Liu P S, Cao Q Z, Zhan D S) 1992 Statistical Optics (Beijing:Science Press) p41 (in Chinese)[顾德门 J W 著 (秦克诚, 刘培森, 曹其智, 詹达三 译) 1992 统计光学(北京:科学出版社)第41页]

    [9]

    Dainty J C 2013 Laser Speckle and Related Phenomena (Berlin:Springer science & business Media) p19

    [10]

    Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M 1984 Phys. Rev. Lett. 53 1057

    [11]

    Marozas J A 2007 J. Opt. Soc. Am. A 24 74

    [12]

    Li P, Wang W, Zhao R C, Geng Y C, Jia H T, Su J Q 2014 Acta Phys. Sin. 63 215202 (in Chinese)[李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦 2014 物理学报 63 215202]

    [13]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [14]

    Rothenberg J E 1995 Solid State Lasers for Application to Inertial Confinement Fusion (ICF) 2633 634

    [15]

    Jiang X J, Li J H, Wu R, Zhu Z T, Zhou S L, Lin Z Q 2013 J. Opt. Soc. Am. A 30 2162

    [16]

    Afeyan B, Huller S 2013 arXiv:1304.3960[physics. plasm-ph]

    [17]

    Albright B J, Yin L, Afeyan B 2014 Phys. Rev. Lett. 113 045002

    [18]

    Regan S P, Marozas J A, Kelly J H, Boehly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W 2000 J. Opt. Soc. Am. B 17 1483

    [19]

    Goodman J W 1996 Introduction to Fourier Optics (New York:The McGraw-Hill Companies) p66

    [20]

    Schmidt J D 2010 Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (Washington:SPIE) p124

    [21]

    Eimerl D, Milam D, Yu J 1993 Phys. Rev. Lett. 70 2738

  • [1] Zhang Ji-Ye, Zhang Jian-Wei, Zeng Yu-Gang, Zhang Jun, Ning Yong-Qiang, Zhang Xing, Qin Li, Liu Yun, Wang Li-Jun. Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication. Acta Physica Sinica, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [2] Tribocorrosion performance of Nitrogen-doped diamond like carbon coating by high power impulse magnetron sputtering technique. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200021
    [3] Liu Jia-He, Lu Jia-Zhe, Lei Jun-Jie, Gao Xun, Lin Jing-Quan. Effect of ambient gas pressure on characteristics of air plasma induced by nanosecond laser. Acta Physica Sinica, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [4] Coherence and path information. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191684
    [5] Internal dynamic detection of soliton molecules in a Ti: sapphire femtosecond laser. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191989
    [6] Analysis of Coherent Combination Characteristics of Beam Array via Tight Focusing. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200034
    [7] Measurement of Magnetically Insensitive State Coherent Time in Blue Dipole Trap. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20192001
    [8] Yang Jin, Chen Jun, Wang Fu-Di, Li Ying-Ying, Lü Bo, Xiang Dong, Yin Xiang-Hui, Zhang Hong-Ming, Fu Jia, Liu Hai-Qing, Zang Qing, Chu Yu-Qi, Liu Jian-Wen, Wang Xun-Yu, Bin Bin, He Liang, Wan Shun-Kuan, Gong Xue-Yu, Ye Min-You. Experimental investigation of lower hybrid current drive induced plasma rotation on the experimental advanced superconducting tokamak. Acta Physica Sinica, 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
    [9] Wang Lin, Wei Lai, Wang Zheng-Xiong. Effect of out-of-plane driving flow on formation of plasmoids in current sheet system. Acta Physica Sinica, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [10] The physics-based model of AlGaN/GaN high electron mobility transistor outer fringing capacitances. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191931
    [11] Research on few-mode PAM regenerator based on nonlinear optical fiber loop mirror. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191858
    [12] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [13] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [14] Thermodynamics of Laser Plasma Removal of Micro and Nano Particles. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191933
    [15] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [16] Identifying two different configurations of the H32+ by the direct above-threshold ionization spectrum in two-color laser field. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200013
    [17] Zhang Zhan-Gang, Lei Zhi-Feng, Tong Teng, Li Xiao-Hui, Wang Song-Lin, Liang Tian-Jiao, Xi Kai, Peng Chao, He Yu-Juan, Huang Yun, En Yun-Fei. Comparison of neutron induced single event upsets in 14 nm FinFET and 65 nm planar static random access memory devices. Acta Physica Sinica, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
  • Citation:
Metrics
  • Abstract views:  101
  • PDF Downloads:  25
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2018
  • Accepted Date:  23 May 2018
  • Published Online:  05 September 2018

Near-field character and improvement technology of induced spatial incoherence

    Corresponding author: Gao Yan-Qi, liufenggyq@siom.ac.cn
  • 1. Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201800, China;
  • 2. National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
  • 3. Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
Fund Project:  Project supported by the Science Challenge Project, China (Grant No. TZ2016005) and the National Natural Science Foundation of China (Grant Nos. 1263236, 0968895, 1102301, 11404308).

Abstract: Induced spatial incoherence technology is a beam-smoothing method with its own unique advantages for laser driven inertial confinement fusion. However, simply using the induced spatial incoherent method will induce a strong near-field intensity spatial modulation, which will threaten the safety of the operation and severely limit the maximum output capability of the device. This is also one of the main technical obstacles to applying induced spatial incoherence to a high-power laser device used for fusion. In this paper, a technique of smoothing the near-field spatial intensity modulation caused by induced spatial incoherence is introduced. By using a two-lens filter system, a homogeneous and stable near-field intensity distribution can be obtained on the premise of reserving the innate advantages of induced spatial incoherence (better far-field smoothing characteristics), thereby avoiding the damage to devices and limitation to output capacity in high power laser system using induced spatial incoherence. Based on the theoretical modeling and numerical analysis, using modulation degree, softening factor, and transmittance as evaluation parameters, the near-field light characters with three kinds of filter apertures, such as square, round, and Gaussian, are compared and analyzed. Finally, in a typical optimization result there are used 16×16 induced spatial incoherent divisions and a square aperture with 0.8 times diffraction limit width. In this case, the near-field intensity distribution is uniform, and at the same time, good smoothing effect on far-field and a high energy utilization rate are ensured. On this basis, according to the actual application of the device, the influence of the collimation error on the near-field intensity distribution is further analyzed. The results show that as long as the collimation error is less than 0.1 times the diffraction limit, the near-field quality will not be affected. The simulation analysis of the focal spot obtained by induced spatial incoherence shows that the addition of the filtering system can further improve the low frequency uniformity of the focal spot.

Reference (21)

Catalog

    /

    返回文章
    返回