搜索

x
中国物理学会期刊

决定论性逐步加速交通流模型的渐近稳态行为

CSTR: 32037.14.aps.48.808

THE ASYMPTOTIC STEADY STATE BEHAVIOR OF DETERMINISTIC GRADUAL ACCELERATION TRAFFIC FLOW MODEL

CSTR: 32037.14.aps.48.808
PDF
导出引用
  • 研究Nagel-Schreckenberg(NS)交通流元胞自动机模型在不考虑车辆随机延迟情况下的决定论性模型的基本图,即渐近稳态的车流平均速度作为车辆密度的函数关系.证明决定论性NS模型,在车流的自组织作用下,其渐近稳态的基本图,与决定论性Fukui-Ishibashi(FI)交通流模型的基本图完全相同.这个结果表明,若把FI交通流模型中的车辆突然加速方式(即车辆速度可以在仅仅一个时步内加速到其最高速限M或前方空距所允许的最大速度),改变为车辆逐步加速方式(车辆速度在每一时步中最多仅能增加一个速度单位),则车辆的自组织相互作用,并不会改变其车流的长时间渐近稳态行为.

     

    In this paper, the fundamental diagram of the average traffic flow speed in the asymptotic steady state as a function of vehicle density for deterministic Nagel-Schreckenberg(NS) traffic flow cellular automaton model of high speed car without stochastic delay has been studied. It is proved that due to self organization of traffic flow, the fundamental diagram in steady state of deterministic NS model is exactly the same as the of deterministic Fukui-Ishibashi(FI) traffic flow model. The result shows if the abrupt acceleration scenario(where the speed of a car may be accelerated to the velocity limit M or the maximum velocity permitted by the spacing ahead in only one time step) is changed to the gradual acceleration scenario (where the speed of a car can increase one unit at most in one time step), the traffic flow behavior in asymptotic steady state will not be changed by self organization car interactions).

     

    目录

    /

    返回文章
    返回