搜索

x
中国物理学会期刊

抛物线性限制势二能级系统量子点量子比特的温度效应

CSTR: 32037.14.aps.57.6758

The temperature effect of the parabolic linear bound potential quantum dot qubit

CSTR: 32037.14.aps.57.6758
PDF
导出引用
  • 应用Pekar变分方法,在抛物量子点中电子与体纵光学声子强耦合条件下,得出了电子的基态和第一激发态的本征能量及基态和第一激发态的本征波函数.以量子点中这样的二能级体系作为一个量子比特.当电子处于基态和第一激发态的叠加态时,计算出电子在时空中作周期性振荡的概率分布.并且得出了概率分布随温度及耦合强度的变化关系.

     

    On the condition of electric-LO phonon strong coupling in parabolic quantum dot,we obtain the eigenenergy and the eigenfuctions of the ground state and the first-excited state by using variational method of Pekar type. This system in quantum dot may be employed as a two-level quantum system-qubit. When the electron is in the superposition state of the ground state and the first-excited state,we obtain the space-time evolution of the electron density. It is shown that the electron density increases with the temperature when the temperature is lower,and the electron density decreases with the temperature when the temperature is higher. At the same time,we found that sometimes the electron density vibrates with the temperature,and its change is slowed down with the strength of coupling increasing.

     

    目录

    /

    返回文章
    返回