搜索

x
中国物理学会期刊

实验优化设计Sr2MgSi2O7:Eu2+, Dy3+的合成及长余辉特性

CSTR: 32037.14.aps.68.20182015

Synthesis and long afterglow characteristics of Sr2MgSi2O7:Eu2+, Dy3+ by experimental optimization design

CSTR: 32037.14.aps.68.20182015
PDF
HTML
导出引用
  • 为了得到最长有效余辉时间的Sr2MgSi2O7:Eu2+, Dy3+荧光粉, 应用二次通用旋转组合设计对实验进行全程优化, 建立了稀土离子掺杂浓度Eu2+, Dy3+和有效余辉时间的二元二次回归方程模型, 应用遗传算法计算得到有效余辉时间的理论最大值. 采用高温固相法合成了最优掺杂浓度Sr2MgSi2O7:0.5 mol%Eu2+, 1.0 mol%Dy3+的荧光粉, 在370 nm激发下观察到了465 nm的特征发射, 这归因于Eu2+的4f65d1—4f7跃迁. 测量了最优荧光粉的热释发光特性, 计算得到了陷阱深度为0.688 eV, 讨论了长余辉发光的特性.

     

    An optimization method is used to obtain the longest effective afterglow time in the rare earth ions doped long lasting phosphors. The effective afterglow time is defined as the time for the intensity to decays to 10% of the initial intensity. In this paper, we choose the Eu2+ and Dy3+ coped Sr2MgSi2O7 as the experimental objects. In order to obtain the longest effective afterglow time of Sr2MgSi2O7:Eu2+, Dy3+ phosphor, the experiment is optimized by quadratic general rotation combination design. The Sr2MgSi2O7:Eu2+, Dy3+ phosphor are synthesized via a solid-state reaction. The effective afterglow time is obtained by the afterglow decay curve. A binary quadratic regression equation model relating the rare earth ions Eu2+/Dy3+ doping concentrations to the effective afterglow time is established. The genetic algorithm is used to solve the equation. The optimal doping concentration of Eu2+ and Dy3+ are 0.5 mol% and 1.0 mol%, respectively. The theoretical maximum value of effective afterglow time is calculated to be 321 s. The phosphor with the optimal doping concentration Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol% Dy3+ are synthesized by the same method as that of synthesizing the frontal samples. The X-ray diffraction shows that the optimal sample prepared is of pure phase, and the doping ions have no effect on the lattice structure of the matrix. A characteristic emission at 465 nm due to the 4f65d1−4f7 transition of Eu2+is observed under the 370 nm excitation. The afterglow curve of the optimal sample is measured and the effective afterglow time is 333 s which has a good match with the theoretically calculated value of 321 s. The thermoluminescence spectrum of the optimal phosphor is measured, and the trap depth is calculated to be 0.688 eV according to the Chen’s model. Moreover, the long-lasting luminescence process of Eu2+ as the luminescence center of Sr2MgSi2O7 matrix is discussed in the energy level diagram.

     

    目录

    /

    返回文章
    返回