搜索

x
中国物理学会期刊

SF6分子的10.6 μm高分辨射流冷却激光吸收光谱

CSTR: 32037.14.aps.72.20222285

High-resolution jet-cooled laser absorption spectra of SF6 at 10.6 μm

CSTR: 32037.14.aps.72.20222285
PDF
HTML
导出引用
  • 六氟化硫(SF6)是一种长寿命的温室气体, 其红外吸收光谱对模拟大气辐射平衡非常重要. SF6也是研究激光分离同位素原理和技术的典型体系之一. 由于SF6分子较重, 其室温下的红外光谱非常密集, 给利用吸收光谱技术监测不同SF6同位素分子的相对浓度带来很大困难. 本文利用超声射流冷却和像散型多程吸收池技术, 测量了32SF633SF6同位素分子在10.6 μm波段的高分辨红外激光吸收光谱. 处于振动基态的32SF633SF6分子在狭缝型超声射流中的转动温度约为10 K, 谱线线宽约为0.0008 cm–1. 在此条件下观测到了SF6一个新的热带, 其Q支的位置在941.0 cm–1附近. 将其初步归属为32SF6的(v1+v2+v3)–(v1+v2) 带, 对该热带进行简化的转动分析, 并讨论利用该热带和33SF6v3基频带进行33SF6/32SF6的相对浓度监测的可行性.

     

    Sulfur hexafluoride (SF6) is a greenhouse gas of very long lifetime. Its infrared absorption spectrum is very important in modeling the atmospheric radiation balances. The SF6 is also a prototypical system for studying the principles and techniques of laser isotope separation using powerful infrared lasers. As a very heavy molecule, the infrared spectrum of SF6 at room temperature is very dense, which poses a great challenge to monitoring the relative abundances of different SF6 isotopomers by direct absorption spectroscopy. Supersonic jet expansions have been widely used to simplify the gas phase molecular spectra. In this work, astigmatic multi-pass absorption cell and distributed feed-back quantum cascade lasers (QCLs) are used to measure jet-cooled rovibrational absorption spectra of 32SF6 and 33SF6 at 10.6 μm. The spectrometer works in a segmented rapid-scan mode. The gas mixtures (SF6∶Ar∶He = 0.12∶1∶100) are expanded through an 80 mm \times 300 μm pulsed slit nozzle. Two QCLs running at room temperature are used and each one covers a spectral range of about 3.0 cm–1. The v3 fundamental bands of both 32SF6 and 33SF6 are observed. The rotational temperature of 32SF6 and 33SF6 in the ground state in the supersonic jet are both estimated at 10 K and the linewidth is about 0.0008 cm–1 by comparing the simulated spectrum with the observed spectrum with the PGOPHER program. A new weak vibrational band centered around 941.0 cm–1 is observed and tentatively assigned to the (v1+v2+v3)–(v1+v2) hot band of 32SF6. The effective Hamiltonian used to analyze the rovibrational spectrum of SF6 is briefly introduced. A simplified rotational analysis for this hot band is performed with the XTDS program developed by the Dijon group. The band-origin of this hot band is determined to be 941.1785(21) cm–1. The rotational temperature of this hot band is estimated at 50 K. A new scheme by measuring the jet-cooled absorption spectrum of this hot band of 32SF6 and the v3 fundamental band of 33SF6 is proposed for measuring the relative abundance of 33SF6/32SF6.

     

    目录

    /

    返回文章
    返回