搜索

x
中国物理学会期刊

锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算

CSTR: 32037.14.aps.72.20222300

Formation of oxygen vacancy clusters in Li-rich Mn-based cathode Materials of lithium-ion batteries: First-principles calculations

CSTR: 32037.14.aps.72.20222300
PDF
HTML
导出引用
  • 采用第一原理方法计算了两种不同镍含量的锂离子电池富锂锰基三元正极材料Li1.2Ni0.32Co0.04Mn0.44O2 (空间群为 R\bar3m ) 和Li1.167Ni0.167Co0.167Mn0.5O2 (空间群为C2/m)中氧空位簇的形成能. 结果表明, 含镍量较少的Li1.167Ni0.167Co0.167Mn0.5O2正极材料中氧空位簇的形成能总是高于含镍量较多的Li1.2Ni0.32Co0.04Mn0.44O2材料中的氧空位簇形成能, 这说明含镍量较高的正极材料中氧空位簇更容易形成. 无论是含镍量较高的富锂锰基材料, 还是含镍量较少的同类材料, 过渡金属边上的氧空位簇的形成能总是大于锂离子附近空位簇的形成能, 说明氧的脱去更趋向于在Li离子附近发生. 较低的温度和较高的氧分压会使氧空位簇的形成能增加, 从而抑制氧空位簇的形成. 此外, 还计算了空位簇边上的过渡金属原子被其它过渡金属原子(Ti 和Mo)替位后的氧空位簇形成能. 结果表明, 除了Li1.2Ni0.32Co0.04Mn0.44O2材料中双氧空位V2O-Li 附近的Ni元素被Ti替位外, 其余情况下过渡金属Ni和Mn分别被Ti或Mo替位后均能够增大VnO-Li空位簇的形成能, 故替位点缺陷的掺杂有抑制氧的损失和提高材料的结构稳定性的作用.

     

    Using the first-principles method, the formation energy values of O-vacancy clusters of two Li-rich Mn-based ternary cathode materials of lithium ion battery with different amounts of nickel , i.e. Li1.2Ni0.32Co0.04Mn0.44O2 (space group R\bar3m) and Li1.167Ni0.167Co0.167Mn0.5O2 (space group C2/m), are calculated. Results show that the formation energy of oxygen vacancy cluster of the material with less nickel content Li1.167Ni0.167Co0.167Mn0.5O2 can be always higher than that of the material Li1.2Ni0.32Co0.04Mn0.44O2 with higher nickel content. This indicates that the oxygen vacancy clusters are more likely to form in cathode material with higher nickel content. The formation energy of the oxygen vacancy cluster near the transition metal is always greater than that near the lithium ion, indicating that the removal of oxygen tends to occur near the Li ion. Lower temperature and higher partial pressure can increase the formation energy of oxygen vacancy cluster, and therefore inhibit the formation of oxygen vacancy cluster. In addition, the formation energy values of oxygen vacancy clusters with the transition metals in the materials replaced by other transition metals (i.e., Ti and Mo) are also calculated. The results show that, in addition to the case of Ni replaced by Ti near the double oxygen vacancies near the Li-ion in Li1.2Ni0.32Co0.04Mn0.44O2, all the remaining cases of the transition metals Ni or Mn replaced by Ti or Mo always increase the formation energy of the O-vacancy cluster. Therefore, the doping should be able to inhibit the loss of oxygen and improve the structural stability of material.

     

    目录

    /

    返回文章
    返回