-
相变微胶囊悬浮液是一种新型的蓄热-传热功能流体, 目前对相变微胶囊与基液流固传递作用认识的欠缺, 导致宏观上对悬浮液流动传热性能的研究结果存在较大的差异. 为此, 本文采用任意拉格朗日-欧拉方法模拟相变微胶囊在液冷微通道内流固作用下的流动传热特性, 对比普通颗粒及相变胶囊对液冷微通道壁面温升的抑制作用, 考察胶囊位置、形状及数量对壁面温升抑制的影响. 结果表明: 胶囊及颗粒均对它们上游区域的壁面温升产生抑制作用, 而胶囊的相变使得抑制效果更加明显; 胶囊越靠近壁面自旋运动越快, 越有利于流体与壁面的换热, 对壁面温升抑制效果越强, 尤其是靠近受热面时; 相比椭圆形胶囊, 圆形胶囊自旋运动更激烈, 对壁面温升抑制效果更优; 随着加热区内胶囊数的增加, 最大抑制效果在逐渐提升.Phase change microcapsule suspension is a new type of heat-storage and heat-transfer functional fluid. Owing to the lack of understanding of flow-solid interaction, there exists a difference in research result of the heat transfer performance of suspension fluid. Therefore, the arbitrary Lagrangian-Euler method is used to simulate the flow-solid transfer characteristics of phase-change microcapsules in the liquid-cooled microchannel. Furthermore, the comparison of heat-transfer between particle and phase-change capsules is conducted. The influences of the position, shape, and number of capsules on the inhibition of the wall temperature rise are investigated. The results show that the wall-temperature-rise inhibition mainly occurs in the upstream area of the capsules. The phase change of capsules can reduce the wall temperature rise. On the other hand, the spin movement is faster when the capsule is closer to the wall, and the heat transfer is enhanced. As a result, the inhibitory effect on the wall temperature rise becomes stronger, especially near the heating surface. The circular capsules spin movement is faster and the inhibition performance is better than the ellipse. With the capsules number increasing, the wall temperature inhibition effect also gradually strengthens.
-
Keywords:
- phase change microcapsule /
- microchannel liquid cooling /
- fluid-particle interaction /
- wall-temperature inhibition








下载: