搜索

x
中国物理学会期刊

光晶格作用下里德伯冷原子系统中的二维空间光孤子

CSTR: 32037.14.aps.72.20230096

Two-dimensional spatial optical solitons in Rydberg cold atomic system under the action of optical lattice

CSTR: 32037.14.aps.72.20230096
PDF
HTML
导出引用
  • 实现高维光孤子是非线性光学研究中一个长期的目标. 本文设计了一个里德伯冷原子与贝塞尔晶格势耦合的系统, 发现了一系列稳定的二维空间光孤子簇, 包括基极孤子、二级孤子、四级孤子和涡旋孤子. 研究表明, 光传播系数、非局域非线性系数、贝塞尔晶格常数可以用来调控光孤子的产生、空间分布及演化; 在系统参数的调控下, 该光孤子簇具备空间稳定性, 能够在一定距离内稳定传播. 本研究为高维空间光孤子的产生和调控提供了一种新的思路.

     

    Realizing stable high-dimensional light solitons is a long-standing goal in the study of nonlinear optical physics. However, in high-dimensional space, the light field will inevitably be distorted due to diffraction. In order to solve the diffraction effect in nonlinear Kerr media and achieve the spatial localization of light fields, we propose a scheme to generate stable two-dimensional (2D) solitons in a cold Rydberg atomic system with a Bessel optical lattice, where a three-level atomic structure, a weak probe laser field, and a strong control field constitute the Rydberg-dressed atomic system. When the local nonlinearity, Bessel potential, and nonlocal nonlinearity which is caused by the long-range Rydberg-Rydberg interaction (RRI) between Rydberg atoms are balanced, the probe field can be localized. Under the approximation of electric dipole and rotating wave, the stable solution of probe field is obtained by solving Maxwell-Bloch equations numerically. A cluster of 2D spatial solitons, including fundamental, two-pole, quadrupole and vortex solitons, is found in this system. Among them, the fundamental, dipole and quadrupole have, one, two, and four intensity centers, respectively. Vortex solitons, on the other hand, exhibit vertical characters in profiles and phase structures. The formation and transmission of these solitons can be controlled by system parameters, such as the propagation coefficient, the degree of nonlocal nonlinearity, and Bessel lattice strength. The stable regions of these solitons are determined by anti Vakhitov Kolokolov (anti-VK) criterion and linear stability analysis method. It is found that four kinds of solitons can be generated and stably propagate in space with proper parameters. Owing to the different structures of the poles, the fundamental state and vortex state remain stable, while the quadrupole ones are unstable. In the modulation of solitons, there is a cutoff value of propagation constant b_\textco, only below which value, the solitons can propagate stably. The light intensity of soliton shows a periodic behavior by tuning Bessel lattice strength. The period of the intensity decreases with the order of the solitons as a result of the interaction between the poles. It is also found that the solitons are more stable with weak nonlocal nonlinearity coefficient. This study provides a new idea for the generation and regulation of optical solitons in high dimensional space.

     

    目录

    /

    返回文章
    返回