搜索

x
中国物理学会期刊

一类非线性Schrödinger-KdV微扰系统的初值问题

CSTR: 32037.14.aps.72.20230241

Initial value problem of nonlinear KdV-Schrödinger system

CSTR: 32037.14.aps.72.20230241
PDF
HTML
导出引用
  • Korteweg-de Vries (KdV)方程是一种数学模型, 用于描述色散介质中长波的传播. 而非线性薛定谔(NLS)方程模拟了由短色散波组成的窄带宽波包的动态, 它是描述许多物理系统的有用模型, 包括玻色-爱因斯坦凝聚、光纤和水波等. 将KdV和NLS方程耦合起来的系统可以模拟长波和短波的相互作用. 这个系统在物理和数学上很有吸引力, 它结合了两个模型的优点. KdV方程描述的长波可以影响NLS方程描述的短波的行为, 而短波反过来也可以影响长波的行为. 这样一个耦合系统在过去的几十年中得到了广泛的研究, 并为许多物理系统带来了重要的影响. 本文在Bernard等工作(Bernard D, Nghiem V N, Benjamin L S 2016 J. Phys. A: Math. Theor. 49 415501)的基础上考虑了KdV非线性Schrödinger微扰系统柯西问题局部解的存在性, 并给出了解的存在空间.

     

    The Korteweg-de Vries (KdV) equation is a mathematical model that describes the propagation of long waves in dispersive media. It takes into account both nonlinearity and dispersion, and is particularly useful for modeling phenomena like solitons. The nonlinear Schrödinger (NLS) equation models the dynamics of narrow-bandwidth wave packets consisting of short dispersive waves. It is a useful model for describing many physical systems, including Bose-Einstein condensates, optical fibers, and water waves. A system that couples the KdV and NLS equations can model the interaction of long and short waves. This system combines the strengths of both models. The long waves described by the KdV equation can affect the behavior of the short waves described by the NLS equation, while the short waves can in turn affect the behavior of the long waves. Such a coupled system has been studied extensively over the last few decades, and has led to important insights into many physical systems. This paper considers the existence of local solutions to the Cauchy problem of KdV-Schrödinger nonlinear system on the basis of literature (Bernard D, Nghiem V N, Benjamin L S 2016 J. Phys. A: Math. Theor. 49 415501), and also gives the existence space of the local solutions.

     

    目录

    /

    返回文章
    返回