搜索

x
中国物理学会期刊

MoO3覆盖层对MoS2基光伏型光电探测器性能的影响

CSTR: 32037.14.aps.72.20230464

Effect of MoO3-overlayer on MoS2-based photovoltaic photodetector performance

CSTR: 32037.14.aps.72.20230464
PDF
HTML
导出引用
  • 基于范德瓦耳斯力的异质结构为设计和研究高性能光电器件提供了无限的可能. 本文报道了一种基于MoS2/MoO3的光伏型光电探测器, 为了实现光伏性能, 实验构建Au/MoS2的非对称肖特基接触. 为提高其光电性能, 实验采用超薄的MoO3作为覆盖层构建MoS2/MoO3异质结, 利用MoO3可见光吸收特性及良好的光透过性增加MoS2材料内参与导电的电子. 实验通过原子层沉积(ALD)法制备MoO3, 并通过调控厚度来优化器件的光响应性能. 研究结果表明, 覆盖层MoO3越薄异质结光吸收效率越高, 且抑制暗电流增益的效果越显著. 相比单一的MoS2基光伏型光电探测器, MoS2/MoO3异质结器件光响应度增强近10倍, 响应度高达916.121 A/W, 探测率约2.74×1011 Jones, 响应时间约73 μs, 有效解决平面型光伏器件响应度低的问题. 本研究通过异质结构设计及其覆盖层的厚度优化, 成功实现对平面型MoS2基光伏器件的光电性能改善, 为未来开发高性能MoS2/氧化物异质结光电探测器提供参考方案.

     

    Photovoltaic device based on van der Waals heterojunction provides an effective way to develop high-performance, low-power consumption, ultra-integrated micro photodetection system. In this paper, we construct an asymmetric Au/MoS2 Schottky junction to realize a planar MoS2-based photovoltaic device. In order to further improve the photoelectric performance of the device, we design a structure covering MoO3 on the surface of MoS2 to construct the heterojunction. Owing to the absorption properties of MoO3 in visible light and the excellent light transmittance of the ultra-thin two-dimensional structure, the electrons involved in conducting in MoS2 material are increased. In most of previous reports, the preparation methods and performance improvement of MoS2/MoO3 heterojunctions were the focus of research, but little attention was paid to exploring the influence of overlayer on devices. Therefore, in this work, we investigate the influence of overlayer thickness on device performance. With the help of atomic layer deposition (ALD) method to control the film thickness, each of the MoO3 materials with thickness of 4 nm, 12 nm and 20 nm (deposition periods of 10, 30 and 50, respectively) is covered on the surface of a MoS2-based photodetector. The photoelectric performance enhancement effects of three groups of heterojunction photodetectors are compared with each other. The results show that the thinner the MoO3 layer, the more significant the enhancement effect of heterojunction photodetectors is. This is mainly attributed to the fact that ultra-thin MoO3 layer not only has visible light absorption, but also reduces the influence of the covering layer on the light absorption of MoS2, thus achieving a heterojunction system with high light absorption efficiency. In addition, the interfacial electric field of the heterojunction effectively promotes the separation of photogenerated carriers, and the thinner the MoO3 coating layer, the weaker the effect of introducing the interfacial defects of the heterojunction is. Therefore, the dark current gain effect of the device is effectively suppressed, which is beneficial to improving the response speed and optical detectivity of the device. Comparing with pure MoS2 photovoltaic photodetectors, the photoresponsivity of MoS2/MoO3 heterojunction device in this paper is enhanced nearly 10 times. The device exhibits a high photoresponse of ~916.121 A/W, a detectivity of ~2.74×1011 Jones, and a fast response time of ~73 μs, showing that this design can effectively solve the low-responsiveness problem of planar photovoltaic device. In this study, for the first time, we construct a planar photovoltaic device based on MoS2/MoO3. By designing heterostructure and optimizing the thickness of the overlayer, the photoelectric performance of planar MoS2-based photovoltaic device is successfully improved, which provides a reference scheme for developing high-performance heterojunction photodetectors of MoS2/oxide materials in future.

     

    目录

    /

    返回文章
    返回