搜索

x
中国物理学会期刊

基于超绝热技术快速制备里德伯超级原子W态

CSTR: 32037.14.aps.74.20241694

Rapid preparation of Rydberg superatom W state using superadiabatic techniques

CSTR: 32037.14.aps.74.20241694
PDF
PDF English Version
HTML
导出引用
  • W态作为一种具有鲁棒性的多体纠缠态, 在量子信息处理、量子网络构建以及量子计算等领域具有重要应用. 本文借助里德伯超级原子的有效能级进行编码, 运用超绝热迭代技术, 提出一种快速制备里德伯超级原子W态的方案. 该方案无需对实验参数和交互时间进行精确控制, 且其反绝热哈密顿量与有效哈密顿量形式相同. 数值模拟结果表明, 此方案不仅能够快速制备W态, 还具备较高的保真度和良好的实验可操作性. 进一步数值模拟分析显示, 在面对原子自发辐射和光子泄漏引发的退相干问题时, 该方案展现出较强的鲁棒性. 此外, 该方案可扩展至 N 个里德伯超级原子的情况, 这展示了该技术在大规模多体纠缠态制备中的潜力.

     

    The W state, as a robust multipartite entangled state, plays an important role in quantum information processing, quantum network construction and quantum computing. In this paper, a three-level ladder-type Rydberg atomic system is placed into a Rydberg blocking sphere to form a superatom. Each superatom has many collective states including just one Rydberg excitation constrained by the Rydberg blockade effect. In the weak cavity field limit, at most one atom can be pumped into excited state, then we can describe the superatom by using a three-level ladder-type system. Afterwards we encode quantum information about the effective energy levels of Rydberg superatoms and propose a fast scheme for preparing the Rydberg superatom W state based on the superadiabatic iterative technique and quantum Zeno dynamics.This scheme can be achieved in only one step by controlling the laser pulses. In this scheme, the superatoms are trapped in spatially separated cavities connected by optical fibers, thereby greatly improving the feasibility of experimental manipulation. A remarkable feature is that it does not need to accurately control experimental parameters and interaction time. Meanwhile, the form of counterdiabatic Hamiltonian is the same as that of the effective Hamiltonian. Through numerical simulations, the fidelity of this scheme can reach 99.94%. Even considering decoherence effects, including atomic spontaneous emission and photon leakage, the fidelity can still exceed 97.5%, thereby further demonstrating the strong robustness of the solution. In addition, the Rabi frequency can be characterized as a linear superposition of Gaussian functions, and this representation significantly alleviates the complexity encountered in practical experiments. Futhermore, we also analyze the influence of parameter fluctuations on the fidelity, and the results show that this scheme is robust against parameter fluctuations. Finally, the present scheme is extended to the case of N Rydberg superatoms, which shows the scalability of our scheme.

     

    目录

    /

    返回文章
    返回