搜索

x
中国物理学会期刊

三维电磁扩散场数值模拟及磁化效应的影响

CSTR: 32037.14.aps.68.20181567

Three-dimensional numerical simulation of electromagnetic diffusion problem and magnetization effects

CSTR: 32037.14.aps.68.20181567
PDF
HTML
导出引用
  • 采用矢量有限元法实现了三维电磁扩散场数值模拟, 并成功将其应用在大地电磁的正演研究中. 为灵活精确地拟合起伏地形和地下不规则构造, 采用由不规则四面体单元组成的非结构化网格, 可根据模型设计的需要调整网格的大小. 引入了基于二次场理论, 将解析的一次场从总场中扣除, 直接计算二次场, 使得误差仅局限于相对较小的二次场, 以提高总场计算精度. 常规的节点有限元法不满足电性分界面上法向电场不连续和无源区单元内电流密度无散, 违反麦克斯韦方程组. 为克服节点有限元法的弊端, 使用矢量有限元法求解基于二次电场的偏微分方程. 另外, 在算法设计中, 考虑了磁导率参数的变化, 可以模拟磁导率不均匀的模型. 通过与COMMEMI模型已发表的结果对比, 证明了本文算法的正确性和精确性. 为突显非结构网格优势, 计算了椭球异常体模型和任意地形模型的MT响应, 并详细讨论了地形和磁化效应对三维数值模拟结果的影响.

     

    We present a newly developed algorithm for three-dimensional (3D) magnetotelluric model based on the vector finite element method. In this paper, unstructured grids which are composed of irregular tetrahedrons are used in our finite element model, which can be refined locally and adaptively according to the complex geometry of computational domain or subsurface structure. For obtaining more accurate solutions, secondary field rather than total field is numerically computed, which makes the errors limited to relatively small secondary field. Traditional node-based finite element method does not satisfy the condition that the normal electrical field is discontinuous at the interface of electric separatrix and the electrical current density is divergence-free throughout the regions without source, which obviously violates Maxwell equations. In order to overcome these drawbacks of node-based finite element, vector finite element method is employed to solve the secondary field-based partial differential equation. Moreover, in this study, the heterogeneous permeability is taken into consideration in our algorithm, as a consequence, which can deal with heterogeneous permeability model. The accuracy of our approach is verified by comparing with previously published numerical simulations of a COMMEMI-3D model. The advantages of our approach are also illustrated by the numerical simulations of model with arbitrary topography and complicated anomalous body. In addition, the simulation results of the irregular anomaly and the complex model of arbitrary terrain are both ideal results. It proves that the effect of 3D terrain is more serious and complex than that of two-dimensional (2D) terrain, and dealing with 3D models or data with 2D algorithm may bring in large errors. In the area where the magnetic permeability is abnormal, the magnetic permeability has an important influence on the numerical simulation results, and the magnetic permeability must be treated as an independent parameter in the magnetotellurics survey.

     

    目录

    /

    返回文章
    返回