搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米颗粒聚集形态对纳米流体导热系数的影响

张智奇 钱胜 王瑞金 朱泽飞

引用本文:
Citation:

纳米颗粒聚集形态对纳米流体导热系数的影响

张智奇, 钱胜, 王瑞金, 朱泽飞

Effect of aggregation morphology of nanoparticles on thermal conductivity of nanofluid

Zhang Zhi-Qi, Qian Sheng, Wang Rui-Jin, Zhu Ze-Fei
PDF
HTML
导出引用
  • 纳米流体中悬浮的纳米颗粒可以增强其导热性能已经得到广泛认可, 然而纳米流体颗粒增强传热的机理目前尚不清楚. 研究表明, 纳米颗粒的聚集是纳米流体导热系数增大的重要机制, 而且纳米颗粒聚集的形态对纳米流体的导热系数有重要影响, 但是目前的导热系数模型大多是建立在Maxwell有效介质理论的“静态”和“均匀分散”假设基础上. 本文用平衡分子动力学模拟Cu-Ar纳米流体, 采用Green-Kubo公式计算导热系数, 采用Schmidt-Ott关系式计算不同聚集形态下的分形维数. 对比导热系数与分形维数可以发现: 在相同体积分数下, 较低的分形维数会有更高的导热系数, 分析了分形维数与导热系数的定量关系. 此外, 通过径向分布函数可以看出纳米颗粒紧密聚集与松散聚集的差异, 基液分子在纳米颗粒附近的纳米薄层中处于动态平衡状态. 研究结果有助于理解纳米颗粒聚集形态对导热系数的影响机理.
    The great interest of many researchers has been aroused in recent two decades due to the great heat transfer enhancement of nanofluid as a heat transfer medium. The reason why the nanofluid can enhance heat transfer is that a number of nanoparticles are suspended in the carry fluid. Most of researchers believe that the microconvection induced by Brownian motion of nanoparticle, the nanolayer around the nanoparticle, the aggregation of nanoparticles and near-field radiation are the underlying mechanisms for heat transfer enhancement by nanofluid. However, contradictories and inconsistencies among experimental results, theoretical results and numerical results are existent commonly because the mechanism of heat transportation by nanoparticles remains unclear so far. Quite a few researches have proven that the aggregation of nanoparticles is one of the important mechanisms for elevating the effective thermal conductivity (ETC) of nanofluid. However, the aggregation morphology (AM) of nanoparticles evaluated by fractal dimension (FD) will greatly influence the thermal conductivity of nanofluid. Unfortunately, all of the existing ETC models are based on the effective medium theory under the assumption of " static state” and " homo-dispersion”. In the present work, equilibrium molecular dynamics (EMD) simulations are carried out to calculate the thermal conductivity of Cu-Ar nanofluid via Green-Kubo formula. In existing researches, fractal dimensions of the aggregations with various morphologies are obtained by Schmidt-Ott equation. Comparisons between the ETC and FD of the nanofluid with same volume fraction show that lower FD can possess greater ETC. It is the first time that the quantitative relationship between ETC and FD has been analyzed. In addition, the difference between loose and compact aggregation can be read out of the pair correlation function near nanoparticles. And the solvent atoms in nanolayer are mobilized and dynamically balanced. The results obtained in the present research are conducible to understanding the influence of AM of nanoparticles on the ETC of nanofluid.
      通信作者: 王瑞金, wangrj@hdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11572107)资助的课题.
      Corresponding author: Wang Rui-Jin, wangrj@hdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11572107).
    [1]

    Choi S U S 1995 ASME International Mechanical Engineering Congress and Exposition San Francisco, California, November 12–17, 1995 p99

    [2]

    Choi S U S, Zhang Z G, Yu W 2001 Appl. Phys. Lett. 79 52

    [3]

    Maxwell J C 1873 A Treatise on Electricity and Magnetism (Oxford: Clarendon Press) p68

    [4]

    Hamilton R L, Crosser O K 1962 Ind. Eng. Chem. Fundam. 1 187Google Scholar

    [5]

    Xuan Y M, Li Q, Zhang X, Fujii M 2006 J. Appl. Phys. 100 043507Google Scholar

    [6]

    王补宣, 颜文盛 2007 自然科学进展 17 984Google Scholar

    Wang B X, Yan W S 2007 Prog. Nat. Sci. 17 984Google Scholar

    [7]

    Prasher R, Phelan P E, Bhattacharya P 2006 Nano Lett. 6 1529Google Scholar

    [8]

    Lin J Z, Xia Y, Ku X K 2016 Int. J. Heat Mass Transf. 93 57Google Scholar

    [9]

    李屹同, 沈谅平, 王浩, 汪汉斌 2013 物理学报 62 124401Google Scholar

    Li Y T, Shen L P, Wang H, Wang H B 2013 Acta Phys. Sin. 62 124401Google Scholar

    [10]

    Xue L, Keblinski P, Phillpot S R, Choi S U S, Eastman J A 2004 Int. J. Heat Mass Transf. 47 4277Google Scholar

    [11]

    Keblinski P, Prasher R, Eapen J 2008 J. Nanopart. Res. 10 1089Google Scholar

    [12]

    Hu Y Q, Zhao Y P, Yu T X 2008 Int. J. Nonlin. Sci. Num. Sim. 9 315

    [13]

    Hu Y Q, Zhao Y P, Yu T X 2008 Mater. Sci. Eng. A 483−484 611

    [14]

    Sedighi M, Mohebbi A 2014 J. Mol. Liq. 197 14Google Scholar

    [15]

    Hong J, Kim D 2012 Thermochim. Acta 542 28Google Scholar

    [16]

    Philip J, Shima P D, Raj B 2007 Appl. Phys. Lett. 91 203103Google Scholar

    [17]

    Wu C, Cho T J, Xu J, Lee D G, Yang B, Zachariah M R 2010 Phys. Rev. E 81 011406Google Scholar

    [18]

    Thaseem T, Christopher J H 2011 J. Nanopart. Res. 13 7099Google Scholar

    [19]

    Xuan Y M, Li Q, Hu W 2003 AIChE J. 49 1038Google Scholar

    [20]

    Feng Y, Yu B, Xu P, Zou M 2007 J. Phys. D 40 3164Google Scholar

    [21]

    Wang B X, Zhou L P, Peng X F 2003 Int. J. Heat Mass Transf. 46 2665Google Scholar

    [22]

    Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P 2008 Int. J. Heat Mass Transf. 51 1431Google Scholar

    [23]

    Prasher R, Evans W, Meakin P, Fish J, Phelan P, Keblinski P 2006 Appl. Phys. Lett. 89 143119Google Scholar

    [24]

    Xiao B Q, Yang Y, Chen L X 2013 Powder Technol. 239 409Google Scholar

    [25]

    Cai J C, Hua X Y, Xiao B Q, Zhou Y F, Wei W 2017 Int. J. Heat Mass Transf. 105 623Google Scholar

    [26]

    Atmuri A K, Henson M A, Bhatia S R 2013 Colloids and Surfaces A 436 325Google Scholar

    [27]

    Gaganpreet S S 2012 Appl. Nanosci. 2 325Google Scholar

    [28]

    Kang H, Zhang Y, Yang M, Li L 2012 J. Nanotechnol. Eng. Med. 3 021001Google Scholar

    [29]

    Duan F, Kwek D, Crivol A 2011 Nanoscale Res. Lett. 6 248Google Scholar

    [30]

    Lin J Z, Xia Y, Ku X K 2014 J. Heat Transf. T. ASME 136 111701Google Scholar

    [31]

    Kang H, Zhang Y, Yang M 2011 Appl. Phys. A 103 1001

    [32]

    Lee S L, Saidur R, Sabri M F M, Min T K 2015 Num. Heat Transf. A 8 432

    [33]

    李凌, 郭丽, 杨茉, 卢玫, 余敏 2010 工程热物理学报 31 1933

    Li L, Guo L, Yang M, Lu M, Yu M 2010 J. Eng. Thermophys. 31 1933

    [34]

    Gross D, Hauger W, Schröder J, Wall W A 2014 Engineering Mechanics (Berlin: Springer) p104

    [35]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443Google Scholar

    [36]

    Jones R E, Mandadapu K K 2012 J. Chem. Phys. 136 154102Google Scholar

    [37]

    McQuarrie D A 2000 Statistical Mechanics (Sausalito: University Science Books) p55

    [38]

    Jullien R, Botet R 1987 Aggregation and Fractal Aggregates (Singapore: World Scientific Publishing Co.) p138

    [39]

    Schmidt-Ott A, Wüstenberg J 1995 J. Aerosol. Sci. 26 S923Google Scholar

    [40]

    Agresti F, Barison S, Battiston S 2013 Nanotechnology 24 365601Google Scholar

    [41]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulations (New York: Cambridge University Press) p35

    [42]

    Allen M P, Tildesley D J 1987 Computer Simulation of Liquids (New York: Oxford Press) p236

    [43]

    Sarkar S, Selvam R P 2007 J. Appl. Phys. 102 074302Google Scholar

    [44]

    Fang X P, Xuan Y M, Li Q 2009 Appl. Phys. Lett. 95 203108Google Scholar

    [45]

    Gharagozloo P E, Goodson K E 2010 J. Appl. Phys. 108 074309Google Scholar

    [46]

    Sadeghi R, Haghshenasfard M, Etemad S, Keshavarzi E 2016 Int. Com. Heat Mass Transf. 72 57Google Scholar

    [47]

    Xie H, Wang J, Xi T, Liu Y, Ai F 2002 J. Appl. Phys. 91 4568Google Scholar

  • 图 1  不同原子间的相互作用势

    Fig. 1.  Potential functions between various particles interaction.

    图 2  归一化的热流自关联函数

    Fig. 2.  Normalized heat current autocorrelation function.

    图 3  液氩在85 K时的导热系数

    Fig. 3.  Thermal conductivity of Ar at 85 K.

    图 4  铜纳米颗粒模型

    Fig. 4.  Model of Cu nanoparticle.

    图 5  Cu-Ar纳米流体模型

    Fig. 5.  Cu-Ar nanofluid model.

    图 6  能量最小化后的纳米薄层结构

    Fig. 6.  Nanolayer at minimizational system energy.

    图 7  铜纳米颗粒周围的Ar原子初始分布(a)和2000步时的分布(b)

    Fig. 7.  Initial distribution (a) and at 2000th time-step (b) of Ar-atoms around Cu-nanoparticle.

    图 8  纳米颗粒聚集 (a)紧密聚集; (b)松散聚集

    Fig. 8.  Aggregation of nanoparticles: (a) Compact aggregation; (b) loose aggregation.

    图 9  对分布函数 (a)液氩体系; (b) Cu-Ar纳米流体

    Fig. 9.  Pair correlation function of fluid Ar (a) and nanofluid Cu/Ar (b).

    图 10  两颗纳米颗粒下纳米流体的对分布函数 (a)分散; (b)松聚集; (c)紧聚集

    Fig. 10.  Pair correlation function of nanofluid with two nanoparticles: (a) Dispersed nanoparticle; (b) loose aggregation; (c) compact aggregation.

    图 11  分形维数与导热系数对比(3颗为实线, 4颗为虚线)

    Fig. 11.  Thermal conductivity at various fractal dimensions (3-p solid line, 4-p dash line).

    表 1  势函数参数

    Table 1.  Parameters of potential functions.

    原子$\varepsilon $/10–2 eV$\sigma $/nm
    Ar-Ar1.04370.3405
    Cu-Cu41.01560.2338
    Ar-Cu6.54290.2871
    下载: 导出CSV

    表 2  3—4颗纳米颗粒下的导热系数与分形维数

    Table 2.  Thermal conductivity for various aggregation morphologies with 3−4 particles.

    体积分数2%3%4%
    颗粒数目343434
    聚集形态
    分形维数1.071.721.361.551.701.061.751.481.691.901.061.721.341.592.01
    导热系数/W·m–1·K–1)0.1680.1720.1940.1890.1710.2350.2160.2410.2210.2170.2680.2530.2540.2460.242
    下载: 导出CSV

    表 3  6颗粒4%体积分数时导热系数与分形维数

    Table 3.  Thermal conductivity for various aggregation morphologies with 6 particles.

    聚集方式
    分形维数1.311.331.391.451.601.671.98
    导热系数/W·m–1·K–1)0.3210.3350.3150.2940.2780.2710.252
    下载: 导出CSV
  • [1]

    Choi S U S 1995 ASME International Mechanical Engineering Congress and Exposition San Francisco, California, November 12–17, 1995 p99

    [2]

    Choi S U S, Zhang Z G, Yu W 2001 Appl. Phys. Lett. 79 52

    [3]

    Maxwell J C 1873 A Treatise on Electricity and Magnetism (Oxford: Clarendon Press) p68

    [4]

    Hamilton R L, Crosser O K 1962 Ind. Eng. Chem. Fundam. 1 187Google Scholar

    [5]

    Xuan Y M, Li Q, Zhang X, Fujii M 2006 J. Appl. Phys. 100 043507Google Scholar

    [6]

    王补宣, 颜文盛 2007 自然科学进展 17 984Google Scholar

    Wang B X, Yan W S 2007 Prog. Nat. Sci. 17 984Google Scholar

    [7]

    Prasher R, Phelan P E, Bhattacharya P 2006 Nano Lett. 6 1529Google Scholar

    [8]

    Lin J Z, Xia Y, Ku X K 2016 Int. J. Heat Mass Transf. 93 57Google Scholar

    [9]

    李屹同, 沈谅平, 王浩, 汪汉斌 2013 物理学报 62 124401Google Scholar

    Li Y T, Shen L P, Wang H, Wang H B 2013 Acta Phys. Sin. 62 124401Google Scholar

    [10]

    Xue L, Keblinski P, Phillpot S R, Choi S U S, Eastman J A 2004 Int. J. Heat Mass Transf. 47 4277Google Scholar

    [11]

    Keblinski P, Prasher R, Eapen J 2008 J. Nanopart. Res. 10 1089Google Scholar

    [12]

    Hu Y Q, Zhao Y P, Yu T X 2008 Int. J. Nonlin. Sci. Num. Sim. 9 315

    [13]

    Hu Y Q, Zhao Y P, Yu T X 2008 Mater. Sci. Eng. A 483−484 611

    [14]

    Sedighi M, Mohebbi A 2014 J. Mol. Liq. 197 14Google Scholar

    [15]

    Hong J, Kim D 2012 Thermochim. Acta 542 28Google Scholar

    [16]

    Philip J, Shima P D, Raj B 2007 Appl. Phys. Lett. 91 203103Google Scholar

    [17]

    Wu C, Cho T J, Xu J, Lee D G, Yang B, Zachariah M R 2010 Phys. Rev. E 81 011406Google Scholar

    [18]

    Thaseem T, Christopher J H 2011 J. Nanopart. Res. 13 7099Google Scholar

    [19]

    Xuan Y M, Li Q, Hu W 2003 AIChE J. 49 1038Google Scholar

    [20]

    Feng Y, Yu B, Xu P, Zou M 2007 J. Phys. D 40 3164Google Scholar

    [21]

    Wang B X, Zhou L P, Peng X F 2003 Int. J. Heat Mass Transf. 46 2665Google Scholar

    [22]

    Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P 2008 Int. J. Heat Mass Transf. 51 1431Google Scholar

    [23]

    Prasher R, Evans W, Meakin P, Fish J, Phelan P, Keblinski P 2006 Appl. Phys. Lett. 89 143119Google Scholar

    [24]

    Xiao B Q, Yang Y, Chen L X 2013 Powder Technol. 239 409Google Scholar

    [25]

    Cai J C, Hua X Y, Xiao B Q, Zhou Y F, Wei W 2017 Int. J. Heat Mass Transf. 105 623Google Scholar

    [26]

    Atmuri A K, Henson M A, Bhatia S R 2013 Colloids and Surfaces A 436 325Google Scholar

    [27]

    Gaganpreet S S 2012 Appl. Nanosci. 2 325Google Scholar

    [28]

    Kang H, Zhang Y, Yang M, Li L 2012 J. Nanotechnol. Eng. Med. 3 021001Google Scholar

    [29]

    Duan F, Kwek D, Crivol A 2011 Nanoscale Res. Lett. 6 248Google Scholar

    [30]

    Lin J Z, Xia Y, Ku X K 2014 J. Heat Transf. T. ASME 136 111701Google Scholar

    [31]

    Kang H, Zhang Y, Yang M 2011 Appl. Phys. A 103 1001

    [32]

    Lee S L, Saidur R, Sabri M F M, Min T K 2015 Num. Heat Transf. A 8 432

    [33]

    李凌, 郭丽, 杨茉, 卢玫, 余敏 2010 工程热物理学报 31 1933

    Li L, Guo L, Yang M, Lu M, Yu M 2010 J. Eng. Thermophys. 31 1933

    [34]

    Gross D, Hauger W, Schröder J, Wall W A 2014 Engineering Mechanics (Berlin: Springer) p104

    [35]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443Google Scholar

    [36]

    Jones R E, Mandadapu K K 2012 J. Chem. Phys. 136 154102Google Scholar

    [37]

    McQuarrie D A 2000 Statistical Mechanics (Sausalito: University Science Books) p55

    [38]

    Jullien R, Botet R 1987 Aggregation and Fractal Aggregates (Singapore: World Scientific Publishing Co.) p138

    [39]

    Schmidt-Ott A, Wüstenberg J 1995 J. Aerosol. Sci. 26 S923Google Scholar

    [40]

    Agresti F, Barison S, Battiston S 2013 Nanotechnology 24 365601Google Scholar

    [41]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulations (New York: Cambridge University Press) p35

    [42]

    Allen M P, Tildesley D J 1987 Computer Simulation of Liquids (New York: Oxford Press) p236

    [43]

    Sarkar S, Selvam R P 2007 J. Appl. Phys. 102 074302Google Scholar

    [44]

    Fang X P, Xuan Y M, Li Q 2009 Appl. Phys. Lett. 95 203108Google Scholar

    [45]

    Gharagozloo P E, Goodson K E 2010 J. Appl. Phys. 108 074309Google Scholar

    [46]

    Sadeghi R, Haghshenasfard M, Etemad S, Keshavarzi E 2016 Int. Com. Heat Mass Transf. 72 57Google Scholar

    [47]

    Xie H, Wang J, Xi T, Liu Y, Ai F 2002 J. Appl. Phys. 91 4568Google Scholar

  • [1] 隋鹏翔. 颗粒尺寸对纳米流体自然对流模式影响的格子Boltzmann方法模拟. 物理学报, 2024, 73(23): 234702. doi: 10.7498/aps.73.20241332
    [2] 邵茁凯, 孙志, 刘坤, 王宸, 周盈旭, 孙伟峰. 基于分形理论的亚毫米间隙正负极性流注放电特性. 物理学报, 2023, 72(19): 194702. doi: 10.7498/aps.72.20230937
    [3] 刘哲, 王雷磊, 时朋朋, 崔海航. 纳米流体液滴内的光驱流动实验及其解析解. 物理学报, 2020, 69(6): 064701. doi: 10.7498/aps.69.20191508
    [4] 张贝豪, 郑林. 倾斜多孔介质方腔内纳米流体自然对流的格子Boltzmann方法模拟. 物理学报, 2020, 69(16): 164401. doi: 10.7498/aps.69.20200308
    [5] 郑殿春, 丁宁, 沈湘东, 赵大伟, 郑秋平, 魏红庆. 基于分形理论的尖-板电极短空气隙放电现象研究. 物理学报, 2016, 65(2): 024703. doi: 10.7498/aps.65.024703
    [6] 陈书赢, 王海斗, 马国政, 康嘉杰, 徐滨士. 等离子喷涂层原生性孔隙几何结构的分形及统计特性. 物理学报, 2015, 64(24): 240504. doi: 10.7498/aps.64.240504
    [7] 张延惠, 沈志朋, 蔡祥吉, 徐秀兰, 高嵩. 二维Hénon-Heiles势及其变形势体系逃逸率与分形维数的研究. 物理学报, 2015, 64(23): 230501. doi: 10.7498/aps.64.230501
    [8] 何昱辰, 刘向军. 基于基液连续假设的大体系Cu-H2O纳米流体输运特性的模拟研究. 物理学报, 2015, 64(19): 196601. doi: 10.7498/aps.64.196601
    [9] 李满, 戴志高, 应见见, 肖湘衡, 岳亚楠. 基于稳态电热拉曼技术的碳纳米管纤维导热系数测量及传热研究. 物理学报, 2015, 64(12): 126501. doi: 10.7498/aps.64.126501
    [10] 火元莲, 张广庶, 吕世华, 袁萍. 闪电的分形特征研究及其在自动识别中的应用. 物理学报, 2013, 62(5): 059201. doi: 10.7498/aps.62.059201
    [11] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流. 物理学报, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [12] 肖波齐, 范金土, 蒋国平, 陈玲霞. 纳米流体对流换热机理分析. 物理学报, 2012, 61(15): 154401. doi: 10.7498/aps.61.154401
    [13] 罗哲贤, 余晖, 平凡, 马革兰. 涡旋轴对称化的分形维数表征. 物理学报, 2012, 61(24): 244702. doi: 10.7498/aps.61.244702
    [14] 赵晟, 尹剑波, 赵晓鹏. 金纳米流体的电场可调光学性质. 物理学报, 2010, 59(5): 3302-3308. doi: 10.7498/aps.59.3302
    [15] 谢华清, 陈立飞. 纳米流体对流换热系数增大机理. 物理学报, 2009, 58(4): 2513-2517. doi: 10.7498/aps.58.2513
    [16] 王照亮, 梁金国, 唐大伟, Y. T. Zhu. 单根单壁碳纳米管导热系数随长度变化尺度效应的实验和理论. 物理学报, 2008, 57(6): 3391-3396. doi: 10.7498/aps.57.3391
    [17] 王照亮, 唐大伟, 贾 涛, 毛安民. 3ω法加热/测温膜中温度波解析及其在微/纳米薄膜导热系数测量中的应用. 物理学报, 2007, 56(2): 747-754. doi: 10.7498/aps.56.747
    [18] 盛永刚, 徐 耀, 李志宏, 吴 东, 孙予罕, 吴中华. 气体吸附法测定二氧化硅干凝胶的分形维数. 物理学报, 2005, 54(1): 221-227. doi: 10.7498/aps.54.221
    [19] 汪 渊, 徐可为. Cu-W薄膜表面形貌的分形表征与电阻率. 物理学报, 2004, 53(3): 900-904. doi: 10.7498/aps.53.900
    [20] 谢华清, 奚同庚, 王锦昌. 纳米流体介质导热机理初探. 物理学报, 2003, 52(6): 1444-1449. doi: 10.7498/aps.52.1444
计量
  • 文章访问数:  12673
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-20
  • 修回日期:  2018-11-22
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-05

/

返回文章
返回