搜索

x
中国物理学会期刊

Y型微通道内双重乳液流动破裂机理

CSTR: 32037.14.aps.68.20181877

Hydrodynamics of double emulsion passing through a microfuidic Y-junction

CSTR: 32037.14.aps.68.20181877
PDF
HTML
导出引用
  • 基于体积分数法建立了Y型微通道中双重乳液流动非稳态理论模型, 数值模拟研究了Y型微通道内双重乳液破裂情况, 详细分析了双重乳液流经Y型微通道时的流场信息以及双重乳液形变参数演化特性, 定量地给出了双重乳液流动破裂的驱动以及阻碍作用, 揭示了双重乳液破裂流型的内在机理. 研究结果表明: 流经Y型微通道时, 双重乳液受上游压力驱动产生形变, 形变过程中乳液两端界面张力差阻碍双重乳液形变破裂, 两者正相关; 隧道的出现将减缓双重乳液外液滴颈部收缩速率以及沿流向拉伸的速率, 并减缓了内液滴沿流向拉伸的速率, 其对于内液滴颈部收缩速率影响不大; 隧道破裂和不破裂工况临界线可以采用幂律关系式l^* = \beta Ca^b进行预测, 隧道破裂和阻塞破裂工况临界线可以采用线性关系l^* = \alpha 描述; 与单乳液运动相图相比, 双重乳液运动相图各工况的分界线关系式系数\alpha \beta 均相应增大.

     

    A scheme of passive breakup of generated droplet into two daughter droplets in a microfluidic Y-junction is characterized by the precisely controlling the droplet size distribution. Compared with the T-junction, the microfluidic Y-junction is very convenient for droplet breakup and successfully applied to double emulsion breakup. Therefore, it is of theoretical significance and engineering value for fully understanding the double emulsion breakup in a Y-junction. However, current research mainly focuses on the breakup of single phase droplet in the Y-junction. In addition, due to structural complexity, especially the existence of the inner droplet, more complicated hydrodynamics and interface topologies are involved in the double emulsion breakup in a Y-junction than the scenario of the common single phase droplet. For these reasons, an unsteady model of a double emulsion passing through microfluidic Y-junction is developed based on the volume of fluid method and numerically analyzed to investigate the dynamic behavior of double emulsion passing through a microfluidic Y-junction. The detailed hydrodynamic information about the breakup and non-breakup is presented, together with the quantitative evolutions of driving and resistance force as well as the droplet deformation characteristics, which reveals the hydrodynamics underlying the double emulsion breakup. The results indicate that the three flow regimes are observed when double emulsion passes through a microfluidic Y-junction: obstructed breakup, tunnel breakup and non-breakup; as the capillary number or initial length of the double emulsion decreases, the flow regime transforms from tunnel breakup to non-breakup; the upstream pressure and the Laplace pressure difference between the forefront and rear droplet interfaces, which exhibit a correspondence relationship, are regarded as the main driving force and the resistance to double emulsion breakup through a microfluidic Y-junction; the appearance of tunnels affects the double emulsion deformation, resulting in the slower squeezing speed and elongation speed of outer droplet as well as the slower squeezing speed of inner droplet; the critical threshold between breakup and non-breakup is approximately expressed as a power-law formula l^* = \beta Ca^b, while the threshold between tunnel breakup and obstructed breakup is approximately expressed as a linear formula l^* = \alpha ; comparing with the phase diagram for single phase droplet, the coefficients \alpha and \beta of the boundary lines between the different regimes in phase diagram for double emulsion are both increased.

     

    目录

    /

    返回文章
    返回