搜索

x
中国物理学会期刊

基于拉曼协议的量子存储

CSTR: 32037.14.aps.68.20182215

Raman protocol-based quantum memories

CSTR: 32037.14.aps.68.20182215
PDF
HTML
导出引用
  • 量子存储器是实现按照需要存储/读出诸如单光子、纠缠或者压缩态等非经典量子态的系统, 是实现量子通信和量子计算必不可少的核心器件. 量子存储协议多种多样, 其中拉曼方案由于具有存储宽带大、可用于存储短脉冲信号的优点而引起了人们的广泛关注. 然而实现真正单光子和光子纠缠的拉曼存储具有挑战性. 本文简要介绍了量子存储器的主要性能和评价指标, 在回顾了量子存储器特别是拉曼量子存储器的发展现状后, 重点介绍了本研究组最近基于拉曼协议实现各种量子态存储的系列研究, 取得的研究成果对于构建高速量子网络具有重要参考价值.

     

    Quantum memories are indispensable for quantum communication and quantum computation, which are able to realize the storage and retrieval of a quantum state such as a single photon, entanglement, or a squeezed state on demand. Among those memories realized by different protocols, the Raman quantum memory has advantages in its broadband and high-speed properties, resulting in huge potential applications in quantum network and quantum computation. However, the realization of Raman quantum memory for a true single photon and photonic entanglement is a challenging job. In this review, after briefly introducing the main benchmarks for quantum memories, showing the state of the art, we focus on the review of the experimental progress recently achieved in storing the quantum state by Raman scheme in our group. We believe that all achievements reviewed are very hopeful in building up a high-speed quantum network.

     

    目录

    /

    返回文章
    返回