搜索

x
中国物理学会期刊

不同硫压退火对溅射沉积ZnS薄膜性能的影响

CSTR: 32037.14.aps.72.20221737

Effect of different sulfur pressure annealing on properties of sputtering-deposited ZnS thin films

CSTR: 32037.14.aps.72.20221737
PDF
HTML
导出引用
  • ZnS作为一种宽带隙半导体, 以其优异的光电性能近年来受到广泛关注, 在太阳能电池、光催化剂以及传感器方面有着广阔的应用前景. 本文首先以射频磁控溅射方法沉积了ZnS薄膜, 然后在600 ℃温度和不同硫压下进行退火, 通过X射线衍射、扫描电子显微镜、能量散射X射线谱、紫外-可见透射光谱以及慢正电子多普勒展宽谱对ZnS薄膜的晶体结构、表面形貌、晶粒尺寸、成分、透光率以及缺陷进行分析. 结果表明: 硫气氛后退火能够改善ZnS薄膜结晶性, 退火后ZnS薄膜光学带隙为3.43—3.58 eV. 当硫压高于0.49 atm(1 atm = 1.01×105 Pa)时, ZnS内部硫间隙原子以及表面单质硫降低了薄膜在可见光区的透光率. 慢正电子多普勒展宽谱结果还表明, ZnS薄膜的缺陷浓度由表层到内层逐渐降低, 薄膜缺陷随着硫压增加而降低. 同时, 3γ湮没证明了薄膜内部较为致密, 硫化会导致薄膜开孔率增加. 吸附硫通过内扩散占据了晶体中硫空位缺陷的位置, 导致缺陷浓度降低, 进而改善了薄膜质量.

     

    ZnS, a kind of wide-band gap semiconductor, has attracted extensive attention in recent years due to its excellent photoelectric performance, which has broad application prospects in solar cells, photocatalysts and sensors. In this work, ZnS thin films are first deposited by radio-frequency (RF) magnetron sputtering, and then annealed at 600 ℃ and different sulfur pressures. The crystal structure, surface morphology, grain size, composition, transmittance and defects of ZnS thin films are analyzed by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, UV-vis transmission spectra, and positron annihilation Doppler broadening spectroscopy. The results show that the crystallinities of ZnS films can be improved by being annealed in sulfur atmosphere, and the optical band gaps of ZnS films after being annealed are in a range of 3.43–3.58 eV. When the sulfur pressure is higher than 0.49 atm, the sulfur interstitial atoms in the ZnS and the elemental sulfur on the surface reduce the transmittance of the film in the visible region. The Doppler broadening spectroscopy results also show that the defect concentrations of ZnS films decrease gradually from their surface layers to the inner layers, and the defects of ZnS films decrease with the increase of sulfur pressure. Meanwhile, the 3γ annihilation also proves that the interior of the film is relatively dense, and the open porosity of the film will increase due to vulcanization. Adsorbed sulfur occupies the position of sulfur vacancy defect in the crystal through internal diffusion, which leads the defect concentration to decrease and the film quality to be improved.

     

    目录

    /

    返回文章
    返回