搜索

x
中国物理学会期刊

新型硒化锑薄膜太阳电池背接触优化

CSTR: 32037.14.aps.72.20221929

Back contact optimization for Sb2Se3 solar cells

CSTR: 32037.14.aps.72.20221929
PDF
HTML
导出引用
  • 硒化锑(Sb2Se3)具有低毒、原材料丰富和光电性能优异等优点, 被认为是最具有发展潜力的薄膜太阳电池光吸收层材料之一. 但目前Sb2Se3薄膜太阳电池光电转换效率与碲化镉、铜铟镓硒和钙钛矿等太阳电池相比仍存在较大差距. 限制Sb2Se3薄膜太阳电池光电转换效率进一步提升的关键因素之一是, 太阳电池结构中Mo背电极和Sb2Se3薄膜构建的背接触界面处容易形成较高的势垒, 降低载流子的抽取效率. 本工作则对Mo背电极进行热处理生成缓冲层MoO2薄膜, 发现缓冲层MoO2的引入, 可有效地促进Sb2Se3薄膜的择优取向生长, 同时实现太阳电池Mo/MoO2/Sb2Se3背接触势垒降低, 相应的填充因子、开路电压和短路电流密度均获得显著提高, 构建的太阳电池光电转换效率从5.04%提升至7.05%.

     

    Antimony selenide (Sb2Se3) has advantages of low-toxicity, abundant and excellent photoelectric properties. It is widely considered as one of the most promising light-harvesting materials for thin-film solar cells. However, the power conversion efficiency of the Sb2Se3 thin-film solar cell is still far inferior to that of cadmium telluride, copper indium gallium selenium and perovskite solar cells. As is well known, the Sb2Se3 solar cell performance is closely related to the light absorber layer (crystallinity, composition, bulk defect density, etc.), PN heterojunction quality (charge carrier concertation, energy band alignment, interface defect density, etc.) and back-contact barrier formation, which determines the process of carrier generation, excitation, relaxation, transfer and recombination. The low fill factor is one of the core problems that limit further efficiency improvement of Sb2Se3 solar cells, which can be attributed to the high potential barrier at the back contact between the Mo electrode and Sb2Se3 absorption layer. In this work, a heat treatment is applied to the Mo electrode to generate a MoO2 buffer layer. It can be found that this buffer layer can inhibit MoSe2 film growth, exhibiting better Ohmic contact with Sb2Se3, and reducing the back contact barrier of the solar cell. The Sb2Se3 thin film is prepared by an effective combination reaction involving sputtered and selenized Sb precursor. After introducing the MoO2 buffer layer, it can also promote the formation of (hk1) (including (211), (221), (002), etc.) preferentially oriented Sb2Se3 thin films with average grain size over 1 μm. And the ratio of Sb to Se is optimized from 0.57 to 0.62, approaching to the stoichiometric ratio of Sb2Se3 thin film and inhibiting the formation of Vse and SbSe defects. Finally, it enhances the open-circuit voltage (VOC) of solar cells from 0.473 to 0.502 V, the short-circuit current density (JSC) from 22.71 to 24.98 mA/cm2, and the fill factor (FF) from 46.90% to 56.18%, thereby increasing the power conversion efficiency (PCE) from 5.04% to 7.05%. This work proposes a facile strategy for interfacial treatment and elucidates the related carrier transport enhancement mechanism, thus paving a bright avenue to breaking through the efficiency bottleneck of Sb2Se3 thin film solar cells.

     

    目录

    /

    返回文章
    返回