搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应变和电场对Ga2SeTe/In2Se3异质结电子结构和光学性质的影响

孙婷钰 吴量 何贤娟 姜楠 周文哲 欧阳方平

引用本文:
Citation:

应变和电场对Ga2SeTe/In2Se3异质结电子结构和光学性质的影响

孙婷钰, 吴量, 何贤娟, 姜楠, 周文哲, 欧阳方平

Effect of strain and electric field on electronic structure and optical properties of Ga2SeTe/In2Se3 heterojunction

Sun Ting-Yu, Wu Liang, He Xian-Juan, Jiang Nan, Zhou Wen-Zhe, Ouyang Fang-Ping
PDF
HTML
导出引用
  • 异质结构的构筑与堆垛是新型二维材料物性调控及应用的有效策略. 基于密度泛函理论的第一性原理计算, 本文研究了4种不同堆叠构型的新型二维Janus Ga2SeTe/In2Se3范德瓦耳斯异质结的电子结构和光学性质. 4种异质结构型均为II型能带结构的间接带隙半导体, 光致电子的供体和受体材料由二维In2Se3的极化方向决定. 光吸收度在可见光区域高达25%, 有利于太阳可见光的有效利用. 双轴应变可诱导直接-间接带隙转变, 外加电场能有效调控异质结构带隙, 使AA2叠加构型的带隙从0.195 eV单调增大到0.714 eV, AB2叠加构型的带隙从0.859 eV单调减小到0.058 eV, 两种调控作用下异质结的能带始终保持II型结构. 压缩应变作用下的异质结在波长较短的可见光区域表现出更优异的光吸收能力. 这些研究结果揭示了Janus Ga2SeTe/In2Se3范德瓦耳斯异质结电子结构的调控机理, 为新型光电器件的设计提供理论指导.
    Stacking two-dimensional materials into heterogeneous structures is an effective strategy to regulate their physical properties and enrich their applications in modern nanoelectronics. The electronic structure and optical properties of a new two-dimensional Janus Ga2SeTe/In2Se3 heterojunction with four stacked configurations are investigated by first principles calculations. The heterojunction of the four configurations is an indirect band-gap semiconductor with a type-II band structure, and the photoelectron donor and acceptor materials are determined by the polarization direction of two-dimensional In2Se3. The light absorption rises to 25% in the visible region, which is conducive to the effective utilization of the solar visible light. The biaxial strain can induce direct-indirect bandgap transition, and the applied electric field can effectively regulate the bandgap of heterogeneous structure. The bandgap of AA2 configuration increases monotonically from 0.195 eV to 0.714 eV, but that of AB2 configuration decreases monotonically from 0.859 eV to 0.058 eV. The band of the heterojunction always maintains the type-II structure under the two kinds of configurations. The heterojunctions under compressive strain show better light absorption capability in the visible region with shorter wavelength. These results reveal the regulatory mechanism of the Janus Ga2SeTe/In2Se3 van der Waals heterojunction electronic structure and provide theoretical guidance in designing novel optoelectronic devices.
      通信作者: 周文哲, csuzwz22@csu.edu.cn ; 欧阳方平, oyfp@csu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52073308, 12164046)、湖南省杰出青年学者基金(批准号: 2015JJ1020)和新疆维吾尔族自治区天池特聘教授基金资助的课题.
      Corresponding author: Zhou Wen-Zhe, csuzwz22@csu.edu.cn ; Ouyang Fang-Ping, oyfp@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52073308, 12164046), the Distinguished Young Scholar Foundation of Hunan Province, China(Grant No. 2015JJ1020), and the Tianchi Distinguished Professor Fund of Xinjiang Uygur Autonomous Region.
    [1]

    Butler S Z, Hollen S M, Cap L, et al. 2013 ACS Nano 7 2898Google Scholar

    [2]

    Das S, Robinson J A, Dubey M, et al. 2015 Annu. Rev. Mater. Res. 45 1Google Scholar

    [3]

    Zhu B, Zhang X, Zeng B, et al. 2017 Org. Electron. 49 45Google Scholar

    [4]

    OuYang F P, Xu H, Fan T 2007 J. Appl. Phys. 102 064501Google Scholar

    [5]

    Chen J Y, Li X X, Zhou W Z, et al. 2020 Adv. Electron. Mater. 6 1900490Google Scholar

    [6]

    Neto A H C, Guinea F, Peres N M R, et al. 2009 Rev. Mod. Phys. 81 109Google Scholar

    [7]

    OuYang F P, Xu Hui, Wei Chen 2008 Acta Phys. Sin. Ch. Ed. 57 1073Google Scholar

    [8]

    Feng B J, Ding Z J, Meng S, et al. 2012 Nano Lett. 12 3507Google Scholar

    [9]

    Qiao J, Kong X, Hu Z X, et al. 2014 Nat. Commun. 5 4475Google Scholar

    [10]

    Xiao J, Long M Q, Li X M, et al. 2014 J. Phys. Condens. Matter 26 405302Google Scholar

    [11]

    Zhu P, Chen Y, Zhou Y, et al. 2018 Int. J. Hydrog. Energy 43 14087Google Scholar

    [12]

    Wu D, Shi J, Zheng X, et al. 2019 Phys. Status Solidi Rapid Res. Lett. 13 1900063Google Scholar

    [13]

    Zhu J, Ha E, Zhao G L, et al. 2017 Coord. Chem. Rev. 352 306Google Scholar

    [14]

    Ouyang F P, Ni X, Yang Z X, et al. 2013 J. Appl. Phys. 114 213701Google Scholar

    [15]

    Hu Y, Zhang S, Sun S, et al. 2015 Appl. Phys. Lett. 107 122107Google Scholar

    [16]

    Guo G, Shi Y, Zhang Y, et al. 2020 Comput. Mater. Sci. 172 109348Google Scholar

    [17]

    Chen L N, OuYang F P, Ma S S, et al. 2010 Phys. Lett. A 374 4343Google Scholar

    [18]

    Xiao J, Yang Z X, Xie W T, et al. 2012 Chin. Phys. B 21 027102Google Scholar

    [19]

    Zhou W Z, Yang Z X, Li A L, et al. 2020 Phys. Rev. B 101 045113Google Scholar

    [20]

    Chen H, Li Y, Huang L, et al. 2015 J. Phys. Chem. C 119 29148Google Scholar

    [21]

    Long R, Prezhdo O. V 2016 Nano Lett. 16 1996Google Scholar

    [22]

    Ahmad W, Liu J, Jiang J, et al. 2021 Adv. Funct. Mater. 31 2104143Google Scholar

    [23]

    Geim, Andre K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [24]

    Novoselov K S, Mishchenko A, Carvalho A, et al. 2016 Science 353 aac9439Google Scholar

    [25]

    Zhu Z, Zhang B, Chen X, et al. 2020 Appl. Phys. Lett. 117 082902Google Scholar

    [26]

    Almayyali, Ali Obies Muhsen, Bahjat B Kadhim, et al. 2020 Chem. Phys. 532 110679Google Scholar

    [27]

    Shang J, Pan L, Wang X, et al. 2018 J. Mater. Chem. C 6 7201Google Scholar

    [28]

    Ding W J, Zhu J B, Wang Z, et al. 2017 Nat. Commun. 8 14956Google Scholar

    [29]

    Hu L, Huang X 2017 RSC Adv. 7 55034Google Scholar

    [30]

    Chen Y, Tang Z, Shan H, et al. 2021 Phys. Rev. B 104 075449Google Scholar

    [31]

    Duan X, Tang S, Huang Z 2021 Comput. Mater. Sci. 200 110819Google Scholar

    [32]

    Li R, Li L, Cheng Y, et al. 2018 Small 14 1802091Google Scholar

    [33]

    Ibarra-Hernández W, Elsayed H, Romero A H, et al. 2017 Phys. Rev. B 96 035201Google Scholar

    [34]

    Kandemir A, Sahin H 2018 Phys. Rev. B 97 155410Google Scholar

    [35]

    Guo Y, Zhou S, Bai Y, et al. 2017 Appl. Phys. Lett. 110 163102Google Scholar

    [36]

    Bui H D, Jappor H R, Hieu N N 2019 Superlattices Microstruct. 125 1Google Scholar

    [37]

    Singh S, Choudhary S 2022 Eur. Phys. J. D 76 1Google Scholar

    [38]

    Min J, Zhou M, Zhang C, et al. 2021 Phys. Lett. A 413 127594Google Scholar

    [39]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [40]

    Kresse G, Furthmüller J, Hafner J 1994 Phys. Rev. B 50 13181Google Scholar

    [41]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [42]

    Kerber T, Sierka M, Sauer J 2008 J. Comput. Chem. 29 2088Google Scholar

    [43]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [44]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [45]

    Bernardi M, Palummo M, Grossman J C 2013 Nano Lett. 13 3664Google Scholar

    [46]

    Huang B, Deng H X, Lee H, et al. 2014 Phys. Rev. X 4 021029

    [47]

    Shi G, Kioupakis E 2015 Nano Lett. 15 6926Google Scholar

    [48]

    Tao X, Gu Y 2013 Nano Lett. 13 3501Google Scholar

    [49]

    Zhang W X, Shi C H, He C, et al. 2020 J. Solid State Chem. 289 121511Google Scholar

    [50]

    Li X, Zhai B, Song X, et al. 2020 Appl. Surf. Sci. 509 145317Google Scholar

  • 图 1   (a) 二维Janus Ga2SeTe的俯视图(上)和侧视图(下); (b) 二维In2Se3的俯视图(上)和侧视图(下); (c) 二维Janus Ga2SeTe的能带结构图; (d) 二维In2Se3的能带结构图

    Fig. 1.  (a) Top view (upper) and side view (lower) of 2 D Janus Ga2SeTe; (b) top view (upper) and side view (lower) of 2 D In2Se3; (c) the energy band structure diagram of two-dimensional Janus Ga2SeTe; (d) energy band structure diagram of two-dimensional In2Se3.

    图 2  4种堆叠构型 (a) AA1, (b) AA2, (c) AB1, (d) AB2结构侧视图(上)及能带结构(下), 其中绿色为Ga2SeTe的贡献, 红色为In2Se3的贡献; (e) 相应的布里渊区和高对称点; (f)Janus Ga2SeTe/In2Se3异质结俯视图

    Fig. 2.  The structure side view (top) and band structure (bottom) of four stack configurations (a )AA1, (b) AA2, (c) AB1 and (d) AB2, Green is the contribution of Ga2SeTe and red is In2Se3. (e) Corresponding Brillouin zones and points of high symmetry; (f) top view of Janus Ga2SeTe/In2Se3 heterojunction.

    图 3  单层Ga2SeTe、单层In2Se3、 Janus Ga2SeTe/In2Se3异质结 (a) AA1; (b) AA2; (c) AB1; (d) AB2堆叠构型的能带对齐图

    Fig. 3.  Band alignment of single-layer Ga2SeTe, single-layer In2Se3, Janus Ga2SeTe/In2Se3 heterojunction (a) AA1; (b) AA2; (c) AB1; (d) AB2 stack configurations.

    图 4  (a) Janus Ga2SeTe/In2Se3异质结AA1, AA2, AB1, AB2堆叠构型、单层Ga2SeTe、单层In2Se3的光吸收度; (b) 局部放大图

    Fig. 4.  (a) The light absorption of Janus Ga2SeTe/In2Se3 heterojunction AA1, AA2, AB1, AB2 stacking configuration, monolayer Ga2SeTe, monolayer In2Se3; (b) partial magnification.

    图 5  Janus Ga2SeTe/In2Se3异质结 (a) AA2, (b) AB2堆叠构型CBM、VBM和带隙与双轴应变的函数关系图; 双轴应变下(c) AA2, (d) AB2堆叠构型的能带结构

    Fig. 5.  Function of Janus Ga2SeTe/In2Se3 heterojunction (a) AA2, (b) AB2 stacked configuration CBM, VBM and Band gap with biaxial strain; band structure of (c) AA2, (d) AB2 stacked configuration under biaxial strain.

    图 6  Janus Ga2SeTe/In2Se3异质结 (a) AA2, (b) AB2堆叠构型CBM, VBM和带隙与外加电场的函数关系图, 外加电场下(c) AA2, (d) AB2堆叠构型的能带结构

    Fig. 6.  Function of Janus Ga2SeTe/In2Se3 heterojunction (a) AA2, (b) AB2 stacked configuration CBM, VBM and band gap with external electric field, band structure of (c) AA2, (d) AB2 stacked configuration under external electric field.

    图 7  双轴应变为–4%, 0%, 4%下Janus Ga2SeTe/In2Se3异质结 (a) AA2, (b) AB2堆叠构型的光吸收度; 外加电场为–0.4, 0, 0.4 V/Å下Ga2SeTe/In2Se3异质结(c) AA2, (d) AB2堆叠构型的光吸收度

    Fig. 7.  The light absorption of Janus Ga2SeTe/In2Se3 heterojunction (a) AA2, (b) AB2 stack configuration under biaxial strain of –4%, 0% and 4%. The optical absorption of Ga2SeTe/In2Se3 heterojunction (c) AA2, (d) AB2 stack configuration under applied electric field of –0.4, 0, 0.4 V/Å.

    表 1  4种Janus Ga2SeTe/In2Se3范德瓦耳斯异质结的Eb和带隙(Eg)

    Table 1.  Eb and band gap (Eg) of four Janus Ga2SeTe/In2Se3 Van der Waals heterojunctions.

    AA1AA2AB1AB2
    Eb/eV–2.404–2.380–2.392–2.367
    Eg/eV0.1840.4140.6110.472
    下载: 导出CSV
  • [1]

    Butler S Z, Hollen S M, Cap L, et al. 2013 ACS Nano 7 2898Google Scholar

    [2]

    Das S, Robinson J A, Dubey M, et al. 2015 Annu. Rev. Mater. Res. 45 1Google Scholar

    [3]

    Zhu B, Zhang X, Zeng B, et al. 2017 Org. Electron. 49 45Google Scholar

    [4]

    OuYang F P, Xu H, Fan T 2007 J. Appl. Phys. 102 064501Google Scholar

    [5]

    Chen J Y, Li X X, Zhou W Z, et al. 2020 Adv. Electron. Mater. 6 1900490Google Scholar

    [6]

    Neto A H C, Guinea F, Peres N M R, et al. 2009 Rev. Mod. Phys. 81 109Google Scholar

    [7]

    OuYang F P, Xu Hui, Wei Chen 2008 Acta Phys. Sin. Ch. Ed. 57 1073Google Scholar

    [8]

    Feng B J, Ding Z J, Meng S, et al. 2012 Nano Lett. 12 3507Google Scholar

    [9]

    Qiao J, Kong X, Hu Z X, et al. 2014 Nat. Commun. 5 4475Google Scholar

    [10]

    Xiao J, Long M Q, Li X M, et al. 2014 J. Phys. Condens. Matter 26 405302Google Scholar

    [11]

    Zhu P, Chen Y, Zhou Y, et al. 2018 Int. J. Hydrog. Energy 43 14087Google Scholar

    [12]

    Wu D, Shi J, Zheng X, et al. 2019 Phys. Status Solidi Rapid Res. Lett. 13 1900063Google Scholar

    [13]

    Zhu J, Ha E, Zhao G L, et al. 2017 Coord. Chem. Rev. 352 306Google Scholar

    [14]

    Ouyang F P, Ni X, Yang Z X, et al. 2013 J. Appl. Phys. 114 213701Google Scholar

    [15]

    Hu Y, Zhang S, Sun S, et al. 2015 Appl. Phys. Lett. 107 122107Google Scholar

    [16]

    Guo G, Shi Y, Zhang Y, et al. 2020 Comput. Mater. Sci. 172 109348Google Scholar

    [17]

    Chen L N, OuYang F P, Ma S S, et al. 2010 Phys. Lett. A 374 4343Google Scholar

    [18]

    Xiao J, Yang Z X, Xie W T, et al. 2012 Chin. Phys. B 21 027102Google Scholar

    [19]

    Zhou W Z, Yang Z X, Li A L, et al. 2020 Phys. Rev. B 101 045113Google Scholar

    [20]

    Chen H, Li Y, Huang L, et al. 2015 J. Phys. Chem. C 119 29148Google Scholar

    [21]

    Long R, Prezhdo O. V 2016 Nano Lett. 16 1996Google Scholar

    [22]

    Ahmad W, Liu J, Jiang J, et al. 2021 Adv. Funct. Mater. 31 2104143Google Scholar

    [23]

    Geim, Andre K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [24]

    Novoselov K S, Mishchenko A, Carvalho A, et al. 2016 Science 353 aac9439Google Scholar

    [25]

    Zhu Z, Zhang B, Chen X, et al. 2020 Appl. Phys. Lett. 117 082902Google Scholar

    [26]

    Almayyali, Ali Obies Muhsen, Bahjat B Kadhim, et al. 2020 Chem. Phys. 532 110679Google Scholar

    [27]

    Shang J, Pan L, Wang X, et al. 2018 J. Mater. Chem. C 6 7201Google Scholar

    [28]

    Ding W J, Zhu J B, Wang Z, et al. 2017 Nat. Commun. 8 14956Google Scholar

    [29]

    Hu L, Huang X 2017 RSC Adv. 7 55034Google Scholar

    [30]

    Chen Y, Tang Z, Shan H, et al. 2021 Phys. Rev. B 104 075449Google Scholar

    [31]

    Duan X, Tang S, Huang Z 2021 Comput. Mater. Sci. 200 110819Google Scholar

    [32]

    Li R, Li L, Cheng Y, et al. 2018 Small 14 1802091Google Scholar

    [33]

    Ibarra-Hernández W, Elsayed H, Romero A H, et al. 2017 Phys. Rev. B 96 035201Google Scholar

    [34]

    Kandemir A, Sahin H 2018 Phys. Rev. B 97 155410Google Scholar

    [35]

    Guo Y, Zhou S, Bai Y, et al. 2017 Appl. Phys. Lett. 110 163102Google Scholar

    [36]

    Bui H D, Jappor H R, Hieu N N 2019 Superlattices Microstruct. 125 1Google Scholar

    [37]

    Singh S, Choudhary S 2022 Eur. Phys. J. D 76 1Google Scholar

    [38]

    Min J, Zhou M, Zhang C, et al. 2021 Phys. Lett. A 413 127594Google Scholar

    [39]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [40]

    Kresse G, Furthmüller J, Hafner J 1994 Phys. Rev. B 50 13181Google Scholar

    [41]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [42]

    Kerber T, Sierka M, Sauer J 2008 J. Comput. Chem. 29 2088Google Scholar

    [43]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [44]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [45]

    Bernardi M, Palummo M, Grossman J C 2013 Nano Lett. 13 3664Google Scholar

    [46]

    Huang B, Deng H X, Lee H, et al. 2014 Phys. Rev. X 4 021029

    [47]

    Shi G, Kioupakis E 2015 Nano Lett. 15 6926Google Scholar

    [48]

    Tao X, Gu Y 2013 Nano Lett. 13 3501Google Scholar

    [49]

    Zhang W X, Shi C H, He C, et al. 2020 J. Solid State Chem. 289 121511Google Scholar

    [50]

    Li X, Zhai B, Song X, et al. 2020 Appl. Surf. Sci. 509 145317Google Scholar

  • [1] 王秀宇, 王涛, 崔雨昂, 吴溪广润, 王洋. 基于第一性原理研究杂质补偿对硅光电性能的影响. 物理学报, 2024, 73(11): 116301. doi: 10.7498/aps.73.20231814
    [2] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究. 物理学报, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [3] 汪帆帆, 陈栋, 袁军, 张珠峰, 姜涛, 周骏. Sb/SnC范德瓦耳斯异质结光电性质的层间转角依赖性及其应用. 物理学报, 2024, 73(22): 227101. doi: 10.7498/aps.73.20241138
    [4] 朱凯, 黄灿, 曹邦杰, 潘燕飞, 樊济宇, 马春兰, 朱岩. 单层1T-CoI2中Kitaev作用的第一性原理研究. 物理学报, 2023, 72(24): 247101. doi: 10.7498/aps.72.20230909
    [5] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应. 物理学报, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [6] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [7] 张仑, 陈红丽, 义钰, 张振华. As/HfS2范德瓦耳斯异质结电子光学特性及量子调控效应. 物理学报, 2022, 71(17): 177304. doi: 10.7498/aps.71.20220371
    [8] 孔宇晗, 王蓉, 徐明生. CuPc/MoS2范德瓦耳斯异质结荧光特性. 物理学报, 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [9] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [10] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [11] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性. 物理学报, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [12] 吴甜, 姚梦丽, 龙孟秋. 钙钛矿CsPbX3(X=Cl, Br, I)与五环石墨烯范德瓦耳斯异质结的界面相互作用和光电性能的第一性原理研究. 物理学报, 2021, 70(5): 056301. doi: 10.7498/aps.70.20201246
    [13] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究. 物理学报, 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [14] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究. 物理学报, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [15] 石彦立, 韩伟, 卢铁城, 陈军. 含羟基结构熔石英光电性质的第一性原理研究. 物理学报, 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [16] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算. 物理学报, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [17] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [18] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [19] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究. 物理学报, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [20] 余志强. 硅基外延OsSi2电子结构及光电特性研究. 物理学报, 2012, 61(21): 217102. doi: 10.7498/aps.61.217102
计量
  • 文章访问数:  4419
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-23
  • 修回日期:  2023-01-21
  • 上网日期:  2023-02-09
  • 刊出日期:  2023-04-05

/

返回文章
返回