搜索

x
中国物理学会期刊

耦合饱和非线性薛定谔方程的多极矢量孤子

CSTR: 32037.14.aps.72.20222284

Multipole vector solitons in coupled nonlinear Schrödinger equation with saturable nonlinearity

CSTR: 32037.14.aps.72.20222284
PDF
HTML
导出引用
  • 本文构造了耦合自散焦饱和非线性薛定谔方程, 通过改变势函数参数再利用功率守恒的平方算符法, 得到偶极-偶极、三极-偶极以及偶极-三极矢量孤子解. 随着孤子功率的增大, 这3类矢量孤子均能存在, 它们的存在性明显受到势函数的调制. 本文给出了3类矢量孤子由势函数调制的存在区域. 3类矢量孤子的稳定区域受每个分量的孤子功率调制. 随着两分量孤子功率的增大, 3类矢量孤子的稳定域均逐渐扩大. 当饱和非线性强度增大时, 三极-偶极和偶极-三极矢量孤子由稳定状态到不稳定状态临界点对应的孤子功率值逐渐降低. 而偶极-偶极矢量孤子由稳定状态到不稳定状态临界点对应的孤子功率值并不会因为饱和非线性强度增大而变化.

     

    We construct the coupled self-defocusing saturated nonlinear Schrödinger equation and obtain the dipole-dipole, tripole-dipole and dipole-tripole vector soliton solutions by changing the potential function parameters and using the square operator method of power conservation. With the increase of soliton power, the dipole-dipole, tripole-dipole and dipole-tripole vector solitons can all exist. The existence of the three kinds of vector solitons is obviously modulated by the potential function. The existence domain of three kinds of vector solitons, modulated by the potential function, is given in this work. The stability domains of three vector solitons are modulated by the soliton power of each component. The stability regions of three kinds of vector solitons expand with the increase of the power of two-component soliton. With the increase of saturation nonlinear strength, the power values of the tripole-dipole and dipole-tripole vector solitons at the critical points from stable state to unstable state decrease gradually, and yet the power of the soliton at the critical point from the stable state to the unstable state does not change.

     

    目录

    /

    返回文章
    返回