搜索

x
中国物理学会期刊

自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解

CSTR: 32037.14.aps.72.20222319

Soliton solutions of the spin-orbit coupled binary Bose-Einstein condensate system

CSTR: 32037.14.aps.72.20222319
PDF
HTML
导出引用
  • 在旋量玻色-爱因斯坦凝聚体中, 孤子态作为宏观量子效应的典型状态, 可以通过自旋-轨道耦合进行调控, 这使得对自旋-轨道耦合玻色-爱因斯坦凝聚体中孤子的研究成为近年来超冷原子领域研究的重要课题之一. 本文研究了描述一维自旋-轨道耦合二分量玻色-爱因斯坦凝聚体Gross-Pitaevskii方程的精确求解, 利用直接假设及可积约化方法, 给出了系统多种类型的孤子解, 讨论了相应的孤子动力学以及自旋-轨道耦合效应对系统的量子磁化和自旋-极化态的影响.

     

    In a quantum system with spin, spin-orbit coupling is manifested by linking the spin angular momentum of a particle with its orbital angular momentum, which leads to many exotic phenomena. The experimental realization of synthetic spin-orbit coupling effects in ultra-cold atomic systems provides an entirely new platform for exploring quantum simulations. In a spinor Bose-Einstein condensate, the spin-orbit coupling can change the properties of the system significantly, which offers an excellent opportunity to investigate the influence of spin-orbit coupling on the quantum state at the macroscopic level. As typical states of macroscopic quantum effects, solitons in spin-orbit coupled Bose-Einstein condensates can be manipulated by spin-orbit coupling directly, which makes the study on spin-orbit coupled Bose-Einstein condensates become one of the hottest topics in the research of ultracold atomic physics in recent years. This paper investigates exact vector soliton solutions of the Gross-Pitaevskii equation for the one-dimensional spin-orbit coupled binary Bose-Einstein condensates, which has four parameters \mu, \delta, \alpha and \beta, where \mu denotes the strength of the spin-orbit coupling, \delta is the detuning parameter, \alpha and \beta are the parameters of the self- and cross-interaction, respectively. For the case \beta=\alpha, by a direct ansatz, two kinds of stripe solitons, namely, the oscillating dark-dark solitons are obtained; meanwhile, a transformation is presented such that from the solutions of the integrable Manakov system, one can get soliton solutions for the spin-orbit coupled Gross-Pitaevskii equation. For the case \beta=3\alpha, a bright-W type soliton for \alpha>0 and a kink-antikink type soliton for \alpha<0 are presented. It is found that the relation between \mu and \delta can affect the states of the solitons. Based on these solutions, the corresponding dynamics and the impact of the spin-orbit coupling effects on the quantum magnetization and spin-polarized domains are discussed. Our results show that spin-orbit coupling can result in rich kinds of soliton states in the two-component Bose gases, including the stripe solitons as well as the classical non-stripe solitons, and various kinds of multi-solitons. Furthermore, spin-orbit coupling has a remarkable influence on the behaviors of quantum magnetization. In the experiments of Bose-Einstein condensates, there have been many different methods to observe the soliton states of the population distribution, the magnetic solitons, and the spin domains, so our results provide some possible options for the related experiments.

     

    目录

    /

    返回文章
    返回