搜索

x
中国物理学会期刊

激光烧蚀固体碳氢材料的离子组分分离研究

CSTR: 32037.14.aps.72.20230013

Separation of ion component from solid hydrocarbon materials by laser ablation

CSTR: 32037.14.aps.72.20230013
PDF
HTML
导出引用
  • 本文从双离子组分等离子体的Landau-Fokker-Planck方程出发, 通过Chapman-Enskog方法约化得到离子输运方程, 求得双离子组分等离子体的离子输运系数, 给出了计及离子扩散的完备离子流体方程; 再结合一维辐射流体力学程序Multi-1D模拟得到的烧蚀层的宏观状态, 研究了激光烧蚀固体碳氢材料时的组分分离现象. 计算结果显示, 离子组分分离对等离子体流体演化的影响小, 基本可以忽略; 但对于敏感依赖于离子组分的其他物理过程, 如汤姆孙散射, 离子组分分离的影响显著, 这意味着研究激光等离子体相互作用时, 离子组分分离必须予以考虑.

     

    Plasma usually consists of multiple ion component. Ion-component separation occurs in various conditions, and profoundly affects the plasma dynamic evolution. In this work, ion-component separation in two-ion-component plasma is investigated in the hydrodynamic condition. Starting from the Landau-Fokker-Planck equations of two-ion-component plasma, the ion transport equations are reduced through the Chapman-Enskog approach. The transport equations are then transformed into a set of linear algebraic equations and solved by expanding the perturbed ion distribution functions into the series of Sonine polynomials. The diffusive ion mass flows with inclusion of baro-diffusion, thermo-diffusion and electro-diffusion are thus obtained. With these efforts, the complete ion fluid equations are presented, which can be used to describe the processes of ion-component separation. We evaluate ion-component separation in the case of a solid CH plate target ablated with a laser pulse, by solving the ion diffusion equation with the hydro states output from the one-dimensional radiative hydro code Multi-1D. The simulation results show that ion-component separation mainly occurs around ablation front and under-dense region, and that the effect of ion-species separation on plasma hydrodynamic evolution is minor and can be neglected. For those physical processes sensitive to ion concentration such as Thomson scattering, however, the effect of ion-component separation is significant, which means that ion-component separation should be included in the study of laser plasma interaction.

     

    目录

    /

    返回文章
    返回