-
本综述主要介绍了双线性约化方法在可积系统求解中的应用. 这一方法基于双线性方法和解的双Wronskian表示. 对于通过耦合系统约化而获得的可积方程, 先求解未约化的耦合系统, 给出用双Wronskian表示的解; 进而利用双Wronskian的规则结构, 施以适当的约化技巧, 获得约化后的可积方程的解. 以非线性Schrödinger方程族和微分-差分非线性Schrödinger方程为具体例证, 详述此方法的应用技巧. 除了经典可积方程, 该方法也适用于非局部可积系统的求解. 其他例子还包括Fokas-Lenells方程和非零背景的非线性Schrödinger 方程等可积系统的求解.
-
关键词:
- 双线性约化方法 /
- 双Wronski行列式 /
- 可积系统 /
- 精确解
The paper is a review of the bilinearization-reduction method which provides an approach to obtain solutions to integrable systems. Many integrable coupled systems can be bilinearized and their solutions are presented in terms of double Wronskians (or double Casoratians in discrete case). The bilinearization-reduction method is based on bilinear equations and solutions in double Wronskian/Casoratian form. For those integrable equations that are reduced from coupled systems, one can first solve the unreduced coupled system, obtaining their solutions in double Wronskian/Casoratian form, then, implement suitable reduction techniques, so that solutions of the reduced equation can be obtained as reductions of those of the unreduced coupled system. The method proves effective in solving not only classical integrable equations but also the nonlocal ones. The so-called nonlocal integrable equations were introduced by Ablowitz and Musslimani via reductions with reverse-space (or reverse-time, or reverse-space-time). Note that this method particularly provides a convenient bilinear approach to solve nonlocal integrable systems. In this review, the nonlinear Schrödinger hierarchy and the differential-difference nonlinear Schrödinger equation are employed as demonstrative examples to elaborate this method. These two examples will be pedagogically helpful in understanding the reduction technique. The reduction is implemented by imposing suitable constraints on the basic column vectors of the double Wronskian/Casoratian. Realizations of the constraints are converted to solve a set of matrix equations which varies with the constraints. Special solutions of the matrix equations are provided, which are also helpful in understanding the eigenvalue structure of the involved spectral problems corresponding to the considered equations. Other examples include the Fokas-Lenells equation and the nonlinear Schrödinger equation with nontrivial background. Since many nonlinear equations with physical significance are integrable as reductions of integrable coupled systems, the paper provides a review as well as an introduction about the bilinearization-reduction method that can be used to solve these nonlinear integrable models.-
Keywords:
- bilinearization-reduction approach /
- double Wronskian /
- integrable system /
- exact solution
[1] Chen K, Deng X, Lou S Y, Zhang D J 2018 Stud. Appl. Math. 141 113Google Scholar
[2] Chen K, Zhang D J 2018 Appl. Math. Lett. 75 82Google Scholar
[3] Ablowitz M J, Musslimani Z H 2013 Phys. Rev. Lett. 110 064105
[4] Ablowitz M J, Musslimani Z H 2014 Phys. Rev. E 90 032912
[5] Ablowitz M J, Musslimani Z H 2021 Phys. Lett. A 409 127516
[6] Deng X, Lou S Y, Zhang D J 2018 Appl. Math. Comput. 332 477Google Scholar
[7] Chen K, Na C N, Yang J X 2023 Nonlinear Dyn. 111 1685Google Scholar
[8] Feng W, Zhao S L, Sun Y Y 2020 Int. J. Mod. Phys. B 34 2050021
[9] Silem A, Wu H, Zhang D J 2021 Appl. Math. Lett. 116 107049
[10] Chen K, Liu S M, Zhang D J 2019 Appl. Math. Lett. 88 230
[11] Wang J, Wu H, Zhang D J 2020 Commun. Theor. Phys. 72 045002
[12] Shi Y, Shen S F, Zhao S L 2019 Nonlinear Dyn. 95 1257Google Scholar
[13] Liu S Z, Wu H 2021 Mod. Phys. Lett. B 35 2150410
[14] Wang J, Wu H 2022 Nonlinear Dyn. 109 3101Google Scholar
[15] Liu S M, Wu H, Zhang D J 2020 Rep. Math. Phys. 86 271Google Scholar
[16] Liu S Z, Wang J, Zhang D J 2022 Stud. Appl. Math. 148 651Google Scholar
[17] Wu H 2021 Nonlinear Dyn. 106 2497Google Scholar
[18] Liu S M, Wang J, Zhang D J 2022 Rep. Math. Phys. 89 199Google Scholar
[19] Wang J, Wu H, Zhang D J 2022 Chin. Phys. B 31 120201
[20] Wang J, Wu H 2022 Commun. Nonlinear Sci. Numer. Simul. 104 106052
[21] Zhang D J, Liu S M, Deng D 2023 Open Commun. Nonlinear Math. Phys. 3 23
[22] Zhang D J 2020 Wronskian solutions of integrable systems, in Nonlinear Systems and Their Remarkable Mathematical Structures (Vol. 2) (Eds. Euler N, Nucci M C) (Boca Raton: CRC Press, Taylor & Francis) pp415–444
[23] Hirota R 1974 Prog. Theore. Phys. 52 1498Google Scholar
[24] Freeman N C, Nimmo J J C 1983 Phys. Lett. A 95 1Google Scholar
[25] Nimmo J J C 1983 Phys. Lett. A 99 279Google Scholar
[26] Hietarinta J, Zhang D J 2009 J. Phys. A: Math. Theor. 42 404006
[27] Ablowitz M J, Kaup D J, Newell A C, Segur H 1973 Phys. Rev. Lett. 31 125Google Scholar
[28] 陈登远 2006 孤子引论 (北京: 科学出版社)
Chen D Y 2006 Introduction to Soliton Theory (Beijing: Science Press) (in Chinese)
[29] Newell A C 1985 Solitons in Mathematics and Physics (Philadelphin: SIAM)
[30] Liu Q M 1990 J. Phys. Soc. Jpn. 59 3520Google Scholar
[31] Yin F M, Sun Y P, Cai F Q, Chen D Y 2008 Comm. Theore. Phys. 49 401Google Scholar
[32] Ablowitz M J, Ladik J F 1976 J. Math. Phys. 17 1011Google Scholar
[33] Fokas A S 1995 Physica D 87 145Google Scholar
[34] Lenells J, Fokas A S 2009 Nonlinearity 22 11Google Scholar
[35] Lenells J 2009 Stud. Appl. Math. 123 215Google Scholar
[36] Gerdjikov V S, Ivanov M I, Kulish P P 1980 Theor. Math. Phys. 44 784Google Scholar
[37] Zhang D J 2006 arXiv: nlin/0603008v3 [nlin.SI]
[38] Zhang D J, Zhao S L, Sun Y Y, Zhou J 2014 Rev. Math. Phys. 26 1430006
[39] Gürses M, Pekcan A 2018 J. Math. Phys. 59 051501
[40] Gürses M, Pekcan A 2019 Commun. Nonlinear Sci. Numer. Simul. 71 161Google Scholar
[41] Gürses M, Pekcan A 2021 Commun. Nonlinear Sci. Numer. Simul. 97 105736
-
No. $(\sigma, \delta)$ ${\boldsymbol T}$ ${\boldsymbol A}$ 1) $(1, -1)$ $T_1=T_4=({\bf{0}})_N$, $T_3=-T_2 ={\boldsymbol{I} }_{N}$ $K_1=-K^*_4={\boldsymbol{K} }_{N}\in \mathbb{C}_{N\times N}$ 2) $(1, 1)$ $T_1=T_4=({\bf{0}})_N$, $T_3=T_2 ={\boldsymbol{I} }_{N}$ $K_1=-K^*_4={\boldsymbol{K} }_{N}\in \mathbb{C}_{N\times N}$ 3) $(-1, -1)$ $T_1=T_4=({\bf{0}})_N$, $T_3=T_2 ={\boldsymbol{I} }_{N}$ $K_1=K^*_4={\boldsymbol{K} }_{N}\in \mathbb{C}_{N\times N}$ 4) $(-1, 1)$ $T_1=T_4=({\bf{0}})_N$, $T_3=-T_2 ={\boldsymbol{I} }_{N}$ $K_1=K^*_4={\boldsymbol{K} }_{N}\in \mathbb{C}_{N\times N}$ 5) $(-1, -1)$ $T_1=-T_4= {\boldsymbol{I} }_{N}, \; T_2=T_3 =({\bf{0} })_{N}$ $K_1={\boldsymbol{K} }_{N}\in \mathbb{R}_{N\times N}, \; K_4=-{\boldsymbol{H} }_{N}\in \mathbb{R}_{N\times N}$ -
[1] Chen K, Deng X, Lou S Y, Zhang D J 2018 Stud. Appl. Math. 141 113Google Scholar
[2] Chen K, Zhang D J 2018 Appl. Math. Lett. 75 82Google Scholar
[3] Ablowitz M J, Musslimani Z H 2013 Phys. Rev. Lett. 110 064105
[4] Ablowitz M J, Musslimani Z H 2014 Phys. Rev. E 90 032912
[5] Ablowitz M J, Musslimani Z H 2021 Phys. Lett. A 409 127516
[6] Deng X, Lou S Y, Zhang D J 2018 Appl. Math. Comput. 332 477Google Scholar
[7] Chen K, Na C N, Yang J X 2023 Nonlinear Dyn. 111 1685Google Scholar
[8] Feng W, Zhao S L, Sun Y Y 2020 Int. J. Mod. Phys. B 34 2050021
[9] Silem A, Wu H, Zhang D J 2021 Appl. Math. Lett. 116 107049
[10] Chen K, Liu S M, Zhang D J 2019 Appl. Math. Lett. 88 230
[11] Wang J, Wu H, Zhang D J 2020 Commun. Theor. Phys. 72 045002
[12] Shi Y, Shen S F, Zhao S L 2019 Nonlinear Dyn. 95 1257Google Scholar
[13] Liu S Z, Wu H 2021 Mod. Phys. Lett. B 35 2150410
[14] Wang J, Wu H 2022 Nonlinear Dyn. 109 3101Google Scholar
[15] Liu S M, Wu H, Zhang D J 2020 Rep. Math. Phys. 86 271Google Scholar
[16] Liu S Z, Wang J, Zhang D J 2022 Stud. Appl. Math. 148 651Google Scholar
[17] Wu H 2021 Nonlinear Dyn. 106 2497Google Scholar
[18] Liu S M, Wang J, Zhang D J 2022 Rep. Math. Phys. 89 199Google Scholar
[19] Wang J, Wu H, Zhang D J 2022 Chin. Phys. B 31 120201
[20] Wang J, Wu H 2022 Commun. Nonlinear Sci. Numer. Simul. 104 106052
[21] Zhang D J, Liu S M, Deng D 2023 Open Commun. Nonlinear Math. Phys. 3 23
[22] Zhang D J 2020 Wronskian solutions of integrable systems, in Nonlinear Systems and Their Remarkable Mathematical Structures (Vol. 2) (Eds. Euler N, Nucci M C) (Boca Raton: CRC Press, Taylor & Francis) pp415–444
[23] Hirota R 1974 Prog. Theore. Phys. 52 1498Google Scholar
[24] Freeman N C, Nimmo J J C 1983 Phys. Lett. A 95 1Google Scholar
[25] Nimmo J J C 1983 Phys. Lett. A 99 279Google Scholar
[26] Hietarinta J, Zhang D J 2009 J. Phys. A: Math. Theor. 42 404006
[27] Ablowitz M J, Kaup D J, Newell A C, Segur H 1973 Phys. Rev. Lett. 31 125Google Scholar
[28] 陈登远 2006 孤子引论 (北京: 科学出版社)
Chen D Y 2006 Introduction to Soliton Theory (Beijing: Science Press) (in Chinese)
[29] Newell A C 1985 Solitons in Mathematics and Physics (Philadelphin: SIAM)
[30] Liu Q M 1990 J. Phys. Soc. Jpn. 59 3520Google Scholar
[31] Yin F M, Sun Y P, Cai F Q, Chen D Y 2008 Comm. Theore. Phys. 49 401Google Scholar
[32] Ablowitz M J, Ladik J F 1976 J. Math. Phys. 17 1011Google Scholar
[33] Fokas A S 1995 Physica D 87 145Google Scholar
[34] Lenells J, Fokas A S 2009 Nonlinearity 22 11Google Scholar
[35] Lenells J 2009 Stud. Appl. Math. 123 215Google Scholar
[36] Gerdjikov V S, Ivanov M I, Kulish P P 1980 Theor. Math. Phys. 44 784Google Scholar
[37] Zhang D J 2006 arXiv: nlin/0603008v3 [nlin.SI]
[38] Zhang D J, Zhao S L, Sun Y Y, Zhou J 2014 Rev. Math. Phys. 26 1430006
[39] Gürses M, Pekcan A 2018 J. Math. Phys. 59 051501
[40] Gürses M, Pekcan A 2019 Commun. Nonlinear Sci. Numer. Simul. 71 161Google Scholar
[41] Gürses M, Pekcan A 2021 Commun. Nonlinear Sci. Numer. Simul. 97 105736
计量
- 文章访问数: 5267
- PDF下载量: 195
- 被引次数: 0