搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaN基高功率微波器件高效场路协同分析方法

张天成 陈迪娜 李春雨 张利民 徐祖银 成爱强 包华广 丁大志

引用本文:
Citation:

GaN基高功率微波器件高效场路协同分析方法

张天成, 陈迪娜, 李春雨, 张利民, 徐祖银, 成爱强, 包华广, 丁大志

Efficient field-circuit co-simulation method for GaN-based high power microwave devices

Zhang Tian-Cheng, Chen Di-Na, Li Chun-Yu, Zhang Li-Min, Xu Zu-Yin, Cheng Ai-Qiang, Bao Hua-Guang, Ding Da-Zhi
PDF
HTML
导出引用
  • 以氮化镓(GaN)为代表的第三代半导体正促使着固态微波功率器件向着更高功率、更高效率、集成化的方向不断发展, 但这会导致器件内部电磁场分布效应更为显著, 单一的路仿真已无法满足分析设计的精度需求, 亟需建立有源GaN器件与无源电磁结构的一体化协同仿真技术. 针对这一需求, 本文提出基于时域不连续伽辽金技术的GaN基高功率微波器件高效场路协同仿真方法, 将所提取的GaN HEMT (high electron mobility transistor)器件大信号紧凑模型引入电磁场方程中, 采用局部时间步进技术以消除非线性紧凑模型及多尺度网格对全局算法稳定性条件的限制, 实现有源器件-无源电磁结构、多尺度粗细网格的高效自适应求解. 通过数值仿真算例与实验测试及软件计算结果对比展示了本文所提方法准确性和高效性, 可为先进大功率微波器件的高可靠研发提供理论基础与设计参考.
    Due to the development of the third-generation semiconductors representative of gallium nitride (GaN), the microwave power devices are developing towards higher power, higher efficiency and high integration. However, the electromagnetic field effects are more significant inside the device. As a result, circuit-level based simulation techniques can no longer satisfy the accuracy requirements of device design. Therefore it is necessary to urgently establish the field-circuit co-simulation techniques to couple the active GaN devices with passive electromagnetic structures. In this work, we propose a high-precision discontinuous Galerkin time-domain method to analyze the performances of GAN-based high-power microwave devices. The extracted large-signal compact model of the GaN HEMT is incorporated into the electromagnetic field equations. A local time-stepping technique is adopted to remove the constraints of nonlinear compact models and multiscale elements on the stability conditions of the global algorithm. The comparisons among numerical simulations, experimental results, and software calculations demonstrate the excellent accuracy and efficiency of the proposed method, which can provide a theoretical analysis and design tool for the high reliability design of advanced high-power microwave devices.
      通信作者: 包华广, hgbao@njust.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFF0707800, 2022YFF0707802)、国家自然科学基金(批准号: 62201257, 62025109, 62001231)、江苏省重点研发计划产业前瞻与关键核心技术(批准号: BE2022070, BE2022070-1)和江苏省卓越博士后计划资助的课题.
      Corresponding author: Bao Hua-Guang, hgbao@njust.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFF0707800, 2022YFF0707802), the Natural Science Foundation of China (Grant Nos. 62201257, 62025109, 62001231), the Primary Research & Development Plan of Jiangsu Province, China (Grant Nos. BE2022070, BE2022070-1), and the Jiangsu Provincial Funding Program for Excellent Postdoctoral Talent, China.
    [1]

    郝跃 2019 科技导报 37 58

    Hao Y 2019 Sci. Technol. Rev. 37 58

    [2]

    Riddle A 2008 IEEE Microwave Mag. 9 154Google Scholar

    [3]

    Zhang X Y, Yang L A, Hu X L, Yang W L, Liu Y C, Li Y, Ma X H, Hao Y 2022 IEEE Trans. Electron Devices 69 1006Google Scholar

    [4]

    Prasad A, Thorsell M, Zirath H, Fager C 2018 IEEE Trans. Microwave Theory Tech. 66 845Google Scholar

    [5]

    Wang Y, Wu Q Z, Yan B, Xu R M, Xu Y H 2022 IEEE Trans. Microwave Theory Tech. 70 315Google Scholar

    [6]

    马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃 2012 物理学报 61 047301Google Scholar

    Ma J G, Ma X H, Zhang H L, Cao M Y, Zhang K, Li W W, Guo X, Liao X Y, Chen W W, Hao Y 2012 Acta Phys. Sin. 61 047301Google Scholar

    [7]

    Angelov I, Andersson K, Schreurs D, Xiao D, Rorsman N, Desmaris V, Sudow M, Zirath H 2006 2006 Asia-Pacific Microwave Conference Yokohama, Japan, December 12–15, 2006 p1699

    [8]

    Schwantuschke D, Seelmann E M, Bruckner P, Quay R, Kallfass I 2013 2013 European Microwave Integrated Circuit Conference Nuremberg, Germany, Oct 6–8, 2013 p284

    [9]

    Jardel O, Groote F D, Reveyrand T, Jacquet J C, Charbonniaud C, Teyssier J P, Floriot D, Quere R 2007 IEEE Trans. Microwave Theory Tech. 55 2660Google Scholar

    [10]

    Yuk K S, Branner G R, McQuate D J 2009 IEEE Trans. Microwave Theory Tech. 57 3322Google Scholar

    [11]

    Luo X B, Yu W H, Lü X, Lü Y J, Dun S B, Feng Z H 2014 IEICE Electron. Express 11 20140613Google Scholar

    [12]

    Wu Q Z, Xu Y H, Chen Y B, Wang Y, Fu W L, Yan B, Xu R M 2018 IEEE Trans. Microwave Theory Tech. 66 1192Google Scholar

    [13]

    Zhao Z, Zhang L, Feng F, ZHang W, Zhang Q J 2020 IEEE Trans. Microwave Theory Tech. 68 3318Google Scholar

    [14]

    Sui W Q, Christensen D A, Durney C H 1992 IEEE Trans. Microwave Theory Tech. 40 724Google Scholar

    [15]

    Chen S T, Ding D Z, Chen R S 2017 IEEE Antennas Wirel. Propag. Lett. 16 3034Google Scholar

    [16]

    Tian C Y, Shi Y, Shum K M, Chan C H 2020 IEEE Trans. Antennas Propag. 68 3026Google Scholar

    [17]

    Kuo C N, Wu R B, Houshband B, Qian Y, Itoh T 1996 IEEE Trans. Microwave Guided Wave Lett. 6 199Google Scholar

    [18]

    Ma K P, Vhen M, Houshband B, Qian Y, Itoh T 1999 IEEE Trans. Microwave Theory Tech. 47 859Google Scholar

    [19]

    Gonzalez O, Pereda J A, Herrera A, Vegas A 2006 IEEE Trans. Microwave Theory Tech. 54 3045Google Scholar

    [20]

    Bao H G, Chen R S 2017 IEEE Trans. Antennas Propag. 65 1490Google Scholar

    [21]

    Bagci H, Yilmaz A E, Jin J M, Michielssen E 2007 IEEE Trans. Electromagn. Compat. 49 361Google Scholar

    [22]

    Chen S T, Ding D Z, Fan Z H, Chen R S 2018 IEEE Microwave Wireless Compon. Lett. 28 431Google Scholar

    [23]

    Lee J H, Liu Q H 2007 IEEE Trans. Microwave Theory Tech. 55 983Google Scholar

    [24]

    Ren Q, Bian Y, Kang L, Werner P L, Werner D H 2017 J. Lightwave Technol. 35 4888Google Scholar

    [25]

    Li P, Jiang L J 2013 IEEE Trans. Microwave Theory Tech. 61 2525Google Scholar

    [26]

    Zhang T, Bao H G, Gu P F, Ding D Z, Werner D H, Chen R S 2022 IEEE Trans. Antennas Propag. 70 526Google Scholar

    [27]

    Gao J J, Werthof A 2009 IEEE Trans. Microwave Theory Tech. 57 737Google Scholar

    [28]

    Wen Z, Xu Y H, Wang C S, Zhao X D, Xu R M 2017 Int. J. Numer. Model. Electron. Networks Devices Fields 30 e2127Google Scholar

    [29]

    闻彰 2018 博士学位论文 (成都: 电子科技大学)

    Wen Z 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [30]

    Zhang H H, Wang P P, Zhang S, Li L, Sha W E I, Jiang L J 2020 Prog. Electromagn. Res. 169 87Google Scholar

    [31]

    Grote M J, Mehlin M, Mitkova T 2015 SIAM J. Sci. Comput. 37 A747Google Scholar

    [32]

    Cui X, Yang F, Gao M 2018 IET Microwaves Antennas Propag. 12 963Google Scholar

    [33]

    Schomann S, Godel N, Warburton T, Clemens M 2020 IEEE Trans. Magn. 46 3504

    [34]

    Wang R, Jin J M 2011 IEEE Trans. Adv. Packag. 33 769

  • 图 1  GaN HEMT大信号等效电路拓扑结构

    Fig. 1.  Large signal equivalent circuit model of GaN HEMT.

    图 2  大信号模型参数一体化提取整体流程

    Fig. 2.  Process of parameter extraction for the large signal model.

    图 3  微波功率器件场路耦合示意图

    Fig. 3.  Schematic diagram of field circuit coupling for microwave power devices.

    图 4  相邻单元交界面处的数值通量

    Fig. 4.  Numerical flux at the interface of adjacent elements.

    图 5  微波放大器结构模型示意图

    Fig. 5.  Schematic diagram of microwave amplifier.

    图 6  区域划分示意图

    Fig. 6.  Schematic diagram of area division.

    图 7  LTS -DGTD计算流程示意图

    Fig. 7.  Schematic diagram of LTS-DGTD calculation.

    图 8  GaN HEMT器件大信号模型S参数测试(符号)与仿真(实线)结果对比

    Fig. 8.  Comparison of S-parameter between simulation (solid line) and measurement (symbol) of GaN HEMT large-signal model.

    图 9  输出功率及效率对比 (a) 1.1 GHz; (b) 1.5 GHz

    Fig. 9.  Comparison of output power and efficiency at different frequency: (a) 1.1 GHz; (b) 1.5 GHz.

    图 10  微波功分器电路示意图

    Fig. 10.  Diagram of microwave power divider.

    图 11  端口3电压输出信号时域波形

    Fig. 11.  Voltage signal waveform in time domain of port 3.

    图 12  (a) GaN基大功率微波器件示意图; (b) 共形网格离散; (c) 非共形网格

    Fig. 12.  (a) Schematic diagram of GaN-based large power microwave device, discretized model with (b) conformal elements and (c) non-conformal elements.

    图 13  微波器件端口电压时域波形图

    Fig. 13.  Time domain waveform of port voltages of microwave device.

    图 14  放大器输入、输出端电压

    Fig. 14.  The input and output voltages of microwave amplifier.

    表 1  GaN HEMT的寄生参数

    Table 1.  The parasitic parameters of GaN HEMT.

    Cpga/fFCpda/fFCgda/fFCpgi/fFCpdi/fFCgdi/fF
    99.154.434.61548.431.160.74
    RgRdRsLg/pHLd/pHLs/pH
    0.2568.8460.7265.0738.7211.98
    下载: 导出CSV

    表 2  GaN HEMT大信号模型的非线性电流参数

    Table 2.  Nonlinear circuit parameters of large signal model for GaN HEMT.

    K10 K11 K20 K21 K30 K31 Vpk1 Vpk2 Vpk3 $ {\alpha _1} $
    –1.09633 –0.285951 –4.01665×10–2 –9.8227×10–3 –1.99307×10–2 2.25872×10–3 8.3227 15.3274 –0.737977 3.0232
    $ {\alpha _2} $ $ {\alpha _3} $ $ \alpha $ gm Vgsm Kp1 Kp2 Kp3 Mipk1 KM
    2.65394 3.27743 0.643925 0.992594 0.436392 7.346×10–4 7.28773×10–2 1.31013×10–2 0.532239 –1.06691
    Ipkth Rth Vdsq Vgsq γsurf γsubs Vdssubs Vgsqpinch
    0.215471 0.10027 1.3846 –3.21923 –1.5589 9.24381×10–3 –0.912853 –2.7
    下载: 导出CSV

    表 3  GaN HEMT大信号模型的栅电容参数

    Table 3.  Grid capacitance parameters of large signal model for GaN HEMT.

    CgspCgs0P10P11P20P21
    0.08670.176511.384.5120.14220.01703
    CgdpCgd0P30P31P40P41
    0.026540.83270.16150.03217–1.310.01814
    下载: 导出CSV

    表 4  计算时间比较

    Table 4.  Comparison of simulation time.

    方法离散单元数采样间隔计算耗时/s
    ADS-版图仿真1644$\Delta f$ = 12.13 MHz142.26
    共形网格DGTD2350$\Delta t$ = 0.286 fs687.69
    非共形网格DGTD768$\Delta t$ = 0.286 fs236.47
    非共形网格LTS-DGTD768$\Delta {t_{\text{l}}}$ = 0.572 fs, $\Delta {t_{\text{s}}}$ = 0.286 fs131.67
    下载: 导出CSV

    表 5  计算时间比较

    Table 5.  Comparison of simulation time.

    方法离散单元数采样间隔计算耗时/s
    ADS-版图仿真1466$\Delta f$ = 1.41 MHz946.79
    共形网格DGTD3920$\Delta t$ = 0.067 fs3303.41
    非共形网格DGTD947$\Delta t$ = 0.067 fs1846.54
    非共形网格LTS-DGTD947$\Delta {t_{\text{l}}}$ = 0.266 fs, $\Delta {t_{\text{s}}}$ = 0.067 fs 621.77
    下载: 导出CSV
  • [1]

    郝跃 2019 科技导报 37 58

    Hao Y 2019 Sci. Technol. Rev. 37 58

    [2]

    Riddle A 2008 IEEE Microwave Mag. 9 154Google Scholar

    [3]

    Zhang X Y, Yang L A, Hu X L, Yang W L, Liu Y C, Li Y, Ma X H, Hao Y 2022 IEEE Trans. Electron Devices 69 1006Google Scholar

    [4]

    Prasad A, Thorsell M, Zirath H, Fager C 2018 IEEE Trans. Microwave Theory Tech. 66 845Google Scholar

    [5]

    Wang Y, Wu Q Z, Yan B, Xu R M, Xu Y H 2022 IEEE Trans. Microwave Theory Tech. 70 315Google Scholar

    [6]

    马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃 2012 物理学报 61 047301Google Scholar

    Ma J G, Ma X H, Zhang H L, Cao M Y, Zhang K, Li W W, Guo X, Liao X Y, Chen W W, Hao Y 2012 Acta Phys. Sin. 61 047301Google Scholar

    [7]

    Angelov I, Andersson K, Schreurs D, Xiao D, Rorsman N, Desmaris V, Sudow M, Zirath H 2006 2006 Asia-Pacific Microwave Conference Yokohama, Japan, December 12–15, 2006 p1699

    [8]

    Schwantuschke D, Seelmann E M, Bruckner P, Quay R, Kallfass I 2013 2013 European Microwave Integrated Circuit Conference Nuremberg, Germany, Oct 6–8, 2013 p284

    [9]

    Jardel O, Groote F D, Reveyrand T, Jacquet J C, Charbonniaud C, Teyssier J P, Floriot D, Quere R 2007 IEEE Trans. Microwave Theory Tech. 55 2660Google Scholar

    [10]

    Yuk K S, Branner G R, McQuate D J 2009 IEEE Trans. Microwave Theory Tech. 57 3322Google Scholar

    [11]

    Luo X B, Yu W H, Lü X, Lü Y J, Dun S B, Feng Z H 2014 IEICE Electron. Express 11 20140613Google Scholar

    [12]

    Wu Q Z, Xu Y H, Chen Y B, Wang Y, Fu W L, Yan B, Xu R M 2018 IEEE Trans. Microwave Theory Tech. 66 1192Google Scholar

    [13]

    Zhao Z, Zhang L, Feng F, ZHang W, Zhang Q J 2020 IEEE Trans. Microwave Theory Tech. 68 3318Google Scholar

    [14]

    Sui W Q, Christensen D A, Durney C H 1992 IEEE Trans. Microwave Theory Tech. 40 724Google Scholar

    [15]

    Chen S T, Ding D Z, Chen R S 2017 IEEE Antennas Wirel. Propag. Lett. 16 3034Google Scholar

    [16]

    Tian C Y, Shi Y, Shum K M, Chan C H 2020 IEEE Trans. Antennas Propag. 68 3026Google Scholar

    [17]

    Kuo C N, Wu R B, Houshband B, Qian Y, Itoh T 1996 IEEE Trans. Microwave Guided Wave Lett. 6 199Google Scholar

    [18]

    Ma K P, Vhen M, Houshband B, Qian Y, Itoh T 1999 IEEE Trans. Microwave Theory Tech. 47 859Google Scholar

    [19]

    Gonzalez O, Pereda J A, Herrera A, Vegas A 2006 IEEE Trans. Microwave Theory Tech. 54 3045Google Scholar

    [20]

    Bao H G, Chen R S 2017 IEEE Trans. Antennas Propag. 65 1490Google Scholar

    [21]

    Bagci H, Yilmaz A E, Jin J M, Michielssen E 2007 IEEE Trans. Electromagn. Compat. 49 361Google Scholar

    [22]

    Chen S T, Ding D Z, Fan Z H, Chen R S 2018 IEEE Microwave Wireless Compon. Lett. 28 431Google Scholar

    [23]

    Lee J H, Liu Q H 2007 IEEE Trans. Microwave Theory Tech. 55 983Google Scholar

    [24]

    Ren Q, Bian Y, Kang L, Werner P L, Werner D H 2017 J. Lightwave Technol. 35 4888Google Scholar

    [25]

    Li P, Jiang L J 2013 IEEE Trans. Microwave Theory Tech. 61 2525Google Scholar

    [26]

    Zhang T, Bao H G, Gu P F, Ding D Z, Werner D H, Chen R S 2022 IEEE Trans. Antennas Propag. 70 526Google Scholar

    [27]

    Gao J J, Werthof A 2009 IEEE Trans. Microwave Theory Tech. 57 737Google Scholar

    [28]

    Wen Z, Xu Y H, Wang C S, Zhao X D, Xu R M 2017 Int. J. Numer. Model. Electron. Networks Devices Fields 30 e2127Google Scholar

    [29]

    闻彰 2018 博士学位论文 (成都: 电子科技大学)

    Wen Z 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [30]

    Zhang H H, Wang P P, Zhang S, Li L, Sha W E I, Jiang L J 2020 Prog. Electromagn. Res. 169 87Google Scholar

    [31]

    Grote M J, Mehlin M, Mitkova T 2015 SIAM J. Sci. Comput. 37 A747Google Scholar

    [32]

    Cui X, Yang F, Gao M 2018 IET Microwaves Antennas Propag. 12 963Google Scholar

    [33]

    Schomann S, Godel N, Warburton T, Clemens M 2020 IEEE Trans. Magn. 46 3504

    [34]

    Wang R, Jin J M 2011 IEEE Trans. Adv. Packag. 33 769

  • [1] 史卓, 常洪祥, 王栋梁, 郭鸿宇, 董自凯, 杜志航, 梁成斌, 李灿, 周朴, 魏志义, 常国庆. 基于掺镱棒状光纤的高功率大能量四路相干合成飞秒激光系统. 物理学报, 2025, 74(1): 014205. doi: 10.7498/aps.74.20241476
    [2] 杨谦, 魏兵, 李林茜, 邓浩川. 一种强鲁棒性的时域非连续伽略金可穿透薄层算法. 物理学报, 2023, 72(8): 080202. doi: 10.7498/aps.72.20222230
    [3] 杨谦, 魏兵, 李林茜, 邓浩川. 一种简化的时域非连续伽略金阻抗边界算法. 物理学报, 2023, 72(6): 060202. doi: 10.7498/aps.72.20222104
    [4] 成爱强, 王帅, 徐祖银, 贺瑾, 张天成, 包华广, 丁大志. 高功率GaN 微波器件大信号缩放模型. 物理学报, 2023, 72(14): 147103. doi: 10.7498/aps.72.20230440
    [5] 崔艺馨, 马英起, 上官士鹏, 康玄武, 刘鹏程, 韩建伟. 空间用GaN功率器件单粒子烧毁效应激光定量模拟技术研究. 物理学报, 2022, 71(13): 136102. doi: 10.7498/aps.71.20212297
    [6] 陈传升, 王秉中, 王任. 基于时间反演技术的电磁器件端口场与内部场转换方法. 物理学报, 2021, 70(7): 070201. doi: 10.7498/aps.70.20201682
    [7] 咸明皓, 刘西川, 印敏, 宋堃, 高太长. 基于星地链路的垂直降雨场反演方法. 物理学报, 2020, 69(2): 024301. doi: 10.7498/aps.69.20191232
    [8] 刘乃漳, 张雪冰, 姚若河. AlGaN/GaN高电子迁移率器件外部边缘电容的物理模型. 物理学报, 2020, 69(7): 077302. doi: 10.7498/aps.69.20191931
    [9] 黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸. 锁频锁相的高功率微波器件技术研究. 物理学报, 2018, 67(8): 088402. doi: 10.7498/aps.67.20172684
    [10] 郭春生, 李世伟, 任云翔, 高立, 冯士维, 朱慧. 加载功率与壳温对AlGaN/GaN高速电子迁移率晶体管器件热阻的影响. 物理学报, 2016, 65(7): 077201. doi: 10.7498/aps.65.077201
    [11] 张新国, 孙洪涛, 赵金兰, 刘冀钊, 马义德, 韩廷武. 蔡氏电路的功能全同电路与拓扑等效电路及其设计方法. 物理学报, 2014, 63(20): 200503. doi: 10.7498/aps.63.200503
    [12] 黄传禄, 丁耀根, 王勇, 谢兴娟, 高冬平. 基于伽辽金级数的空间电荷场计算模型. 物理学报, 2012, 61(14): 148401. doi: 10.7498/aps.61.148401
    [13] 周丽丹, 粟敬钦, 李平, 刘兰琴, 王文义, 王方, 莫磊, 程文雍, 张小民. 高功率固体激光装置光学元件“缺陷”分布的功率谱密度方法及等效求法. 物理学报, 2009, 58(9): 6279-6284. doi: 10.7498/aps.58.6279
    [14] 谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华. 高场应力及栅应力下AlGaN/GaN HEMT器件退化研究. 物理学报, 2009, 58(1): 511-517. doi: 10.7498/aps.58.511
    [15] 李炳乾, 刘玉华, 冯玉春. 大功率GaN基发光二极管等效串联电阻的功率耗散及其对发光效率的影响. 物理学报, 2008, 57(1): 477-481. doi: 10.7498/aps.57.477
    [16] 李 琦, 李肇基, 张 波. 表面注入P-top区double RESURF功率器件表面电场模型. 物理学报, 2007, 56(11): 6660-6665. doi: 10.7498/aps.56.6660
    [17] 郝 跃, 韩新伟, 张进城, 张金凤. AlGaN/GaN HEMT器件直流扫描电流崩塌机理及其物理模型. 物理学报, 2006, 55(7): 3622-3628. doi: 10.7498/aps.55.3622
    [18] 胡辉勇, 张鹤鸣, 吕 懿, 戴显英, 侯 慧, 区健锋, 王 伟, 王喜嫒. SiGe HBT大信号等效电路模型. 物理学报, 2006, 55(1): 403-408. doi: 10.7498/aps.55.403
    [19] 罗晓曙, 方锦清, 屈万里. 用延长信号等效关联时间的方法实现超混沌控制. 物理学报, 1999, 48(4): 589-595. doi: 10.7498/aps.48.589
    [20] 林为干. 矩形波导一个不连续性的等效电路. 物理学报, 1956, 12(5): 459-476. doi: 10.7498/aps.12.459
计量
  • 文章访问数:  4620
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-26
  • 修回日期:  2023-05-04
  • 上网日期:  2023-05-22
  • 刊出日期:  2023-07-20

/

返回文章
返回