搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于C14H31O3P-Ti3C2/Au肖特基结的自驱动近红外探测器

杜立杰 陈靖雯 王荣明

引用本文:
Citation:

基于C14H31O3P-Ti3C2/Au肖特基结的自驱动近红外探测器

杜立杰, 陈靖雯, 王荣明

Self-driven near infrared photoelectric detector based on C14H31O3P-Ti3C2/Au Schottky junction

Du Li-Jie, Chen Jing-Wen, Wang Rong-Ming
PDF
HTML
导出引用
  • Ti3C2Tx作为新型二维过渡金属碳化物/氮化物(MXene)中的一类, 具有丰富的表面官能团(—OH, —F和—O等), 并能够通过进一步的表面功能化调控表现出半导体特性. 目前将Ti3C2Tx半导体性质应用在红外光电探测器中的研究还很少. 本文研制了一种基于C14H31O3P-Ti3C2/Au肖特基结的自驱动近红外光电探测器. 通过膦酸基团与Ti3C2Tx表面羟基的缩合反应, 制备了改性的C14H31O3P-Ti3C2二维纳米半导体; 并采用滴涂法构建了C14H31O3P-Ti3C2/Au肖特基结光电探测器. 该器件在近红外波段(808—1342 nm)显示出良好的检测性能和循环稳定性, 1064 nm近红外光照射下最高响应度为0.28 A/W, 比探测率为4.3×107 Jones, 经10次I-t循环后器件性能保持稳定. 由于C14H31O3P-Ti3C2/Au肖特基结光电探测器具备自驱动特性和简单的制备工艺, 因此在弱光信号检测方面表现出良好的应用潜力, 例如在天文学和生物医学领域. 这为基于MXene的近红外探测器的设计和研制提供了新思路.
    Ti3C2Tx, as one of new two-dimensional materials MXene, has abundant surface functional groups (—OH, —F, and —O, etc.) and can exhibit semiconductor properties through further surface functionalization. In addition, it has excellent absorption capabilities for both infrared and visible light. Currently, there is limited research on applying the semiconductor properties of Ti3C2Tx to infrared photodetectors. In this study, a self-driven near-infrared photodetector based on a C14H31O3P-Ti3C2/Au Schottky junction is developed. The modified C14H31O3P-Ti3C2 two-dimensional semiconductor is prepared by a simple solution method, in which the phosphonic acid group reacts with the hydroxyl group on the Ti3C2Tx surface. The C14H31O3P-Ti3C2/Au photodetector is constructed by using a drop-coating method at room temperature. The observation of an S-shaped curve in the I-V characteristics indicates the formation of a Schottky junction between C14H31O3P-Ti3C2 nanosheets and the Au electrode. The device exhibits good detection performance in the near-infrared band (808–1342 nm), with a maximum responsivity of 0.28 A/W, a detectivity of 4.3×107 Jones and an external quantum efficiency (EQE) of 32.75% under 1064 nm infrared light illumination. The Ion/Ioff ratio is 10.4, which is about 7.3 times higher than that under 1342 nm light. The response time and the recovery time of the device are 0.9 s and 0.5 s, respectively. After 10 cycles of I-t, the photocurrent does not show any significant decay, indicating excellent repeatability and cycle stability of the device. Owing to the built-in electric field formed by the Schottky junction, photo-generated electrons and holes can quickly separate and produce photocurrent in the external circuit without the need for external voltage driving. In addition, the C14H31O3P-Ti3C2 film obtained by drop-casting on Au is composed of several layers of nanosheets that are randomly stacked, which can effectively relax the plasma momentum limitation, promote the generation of hot electrons, and contribute to the photocurrent. As the C14H31O3P-Ti3C2/Au Schottky junction photodetector possesses self-driven characteristics and simple fabrication process, it exhibits great potential applications in detecting weak light signals, such as in the fields of astronomy and biomedical science. The successful fabrication of this photodetector provides a new approach for designing and developing MXene-based near-infrared detectors, thus promoting further advancements in this field.
      通信作者: 王荣明, rmwang@ustb.edu.cn
    • 基金项目: 北京市自然科学基金(批准号: 2212034)和国家自然科学基金(批准号: 51971025)资助的课题.
      Corresponding author: Wang Rong-Ming, rmwang@ustb.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing, China (Grant No. 2212034) and the National Natural Science Foundation of China (Grant No. 51971025).
    [1]

    Tantum S L, Yu Y L, Collins L M 2008 IEEE Geosci. Remote Sens. Lett. 5 103Google Scholar

    [2]

    Xu H H, Liu J, Zhang J, Zhou G D, Luo N Q, Zhao N 2017 Adv. Mater. 29 1700975Google Scholar

    [3]

    Millan M S, Escofet J 2004 Opt. Lett. 29 1440Google Scholar

    [4]

    Jonsson P, Casselgren J, Thornberg B 2015 IEEE Sens. J. 15 1641Google Scholar

    [5]

    Homan K A, Souza M, Truby R, Luke G P, Green C, Vreeland E, Emelianov S 2012 ACS Nano 6 641Google Scholar

    [6]

    Zeng L H, Lin S H, Li Z J, Zhang Z X, Zhang T F, Xie C, Mak C H, Chai Y, Lau S P, Luo L B, Tsang Y H 2018 Adv. Funct. Mater. 28 1705970Google Scholar

    [7]

    Zhuo R R, Zeng L H, Yuan H Y, Wu D, Wang Y G, Shi Z F, Xu T T, Tian Y T, Li X J, Tsang Y H 2019 Nano Res. 12 183Google Scholar

    [8]

    Wang F, Wang Z X, Yin L, Cheng R Q, Wang J J, Wen Y, Shifa T A, Wang F M, Zhang Y, Zhan X Y, He J 2018 Chem. Soc. Rev. 47 6296Google Scholar

    [9]

    Liu J L, Li X, Wang H, Yuan G, Suvorova A, Gain S, Ren Y L, Lei W 2020 ACS Appl. Mater. Interfaces 12 31810Google Scholar

    [10]

    Chao J F, Xing S M, Liu Z D, Zhang X T, Zhao Y L, Zhao L H, Fan Q F 2018 Mater. Res. Bull. 98 194Google Scholar

    [11]

    Marques-Hueso J, Jones T D A, Watson D E, Ryspayeva A, Esfahani M N, Shuttleworth M P, Harris R A, Kay R W, Desmulliez M P Y 2018 Adv. Funct. Mater. 28 1704451Google Scholar

    [12]

    孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明 2022 物理学报 71 066801Google Scholar

    Sun Y H, Mu C Y, Jiang W G, Zhou L, Wang R M 2022 Acta Phys. Sin. 71 066801Google Scholar

    [13]

    Jiang X T, Kuklin A V, Baev A, Ge Y Q, Agren H, Zhang H, Prasad P N 2020 Phys. Rep. Rev. Sec. Phys. Lett. 848 1Google Scholar

    [14]

    Xu H, Ren A B, Wu J, Wang Z M 2020 Adv. Funct. Mater. 30 2000907Google Scholar

    [15]

    Li R Y, Zhang L B, Shi L, Wang P 2017 ACS Nano 11 3752Google Scholar

    [16]

    Fu H C, Ramalingam V, Kim H, Lin C H, Fang X S, Alshareef H N, He J H 2019 Adv. Energy Mater. 9 1900180Google Scholar

    [17]

    Li Y B, Shao H, Lin Z F, Lu J, Liu L Y, Duployer B, Persson P O A, Eklund P, Hultman L, Li M, Chen K, Zha X H, Du S Y, Rozier P, Chai Z F, Raymundo-Pinero E, Taberna P L, Simon P, Huang Q 2020 Nat. Mater. 19 894Google Scholar

    [18]

    Hantanasirisakul K, Zhao M Q, Urbankowski P, Halim J, Anasori B, Kota S, Ren C E, Barsoum M W, Gogotsi Y 2016 Adv. Electron. Mater. 2 1600050Google Scholar

    [19]

    Zhang C F J, Pinilla S, McEyoy N, Cullen C P, Anasori B, Long E, Park S H, Seral-Ascaso A, Shmeliov A, Krishnan D, Morant C, Liu X H, Duesberg G S, Gogotsi Y, Nicolosi V 2017 Chem. Mater. 29 4848Google Scholar

    [20]

    Song W D, Chen J X, Li Z L, Fang X S 2021 Adv. Mater. 33 2101059Google Scholar

    [21]

    Zhang X W, Shao J H, Yan C X, Wang X M, Wang Y F, Lu Z H, Qin R J, Huang X W, Tian J L, Zeng L H 2021 Mater. Des. 207 109850Google Scholar

    [22]

    Hu C Q, Li L, Shen G Z 2021 Chin. J. Chem. 39 2141Google Scholar

    [23]

    Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y 2013 Adv. Funct. Mater. 23 2185Google Scholar

    [24]

    Zhang X, Zhang Z H, Zhou Z 2018 J. Energy Chem. 27 73Google Scholar

    [25]

    Yan L, Zhu J J, Wang B T, He J J, Song H Z, Chu W B, Tretiak S, Zhou L J 2022 Nano Lett. 22 5592Google Scholar

    [26]

    Zha X H, Huang Q, He J, He H M, Zhai J Y, Francisco J S, Du S Y 2016 Sci. Rep. 6 27971Google Scholar

    [27]

    Feng Q, Deng F K, Li K C, Dou M Y, Zou S, Huang F C A 2021 Colloid Surf. A-Physicochem. Eng. Asp. 625 126903Google Scholar

    [28]

    Mutin P H, Guerrero G, Vioux A 2005 J. Mater. Chem. 15 3761Google Scholar

    [29]

    Yang S, Zhang P P, Wang F X, Ricciardulli A G, Lohe M R, Blom P W M, Feng X L 2018 Angew. Chem. Int. Edit. 57 15491Google Scholar

    [30]

    Lin Z Y, Sun D F, Huang Q, Yang J, Barsoum M W, Yan X B 2015 J. Mater. Chem. A 3 14096Google Scholar

    [31]

    Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nat. Rev. Mater. 2 16098Google Scholar

    [32]

    Ye H J, Shao W Z, Zhen L 2013 Colloid Surf. A-Physicochem. Eng. Asp. 427 19Google Scholar

    [33]

    Ye Y T, Yi W C, Liu W, Zhou Y, Bai H, Li J F, Xi G C 2020 Sci. China Mater. 63 794Google Scholar

    [34]

    Jimmy J, Kandasubramanian B 2020 Eur. Polym. J. 122 109367Google Scholar

    [35]

    Xu H, Chen R, Ali M, Lee H, Ko M J 2020 Adv. Funct. Mater. 30 2002739Google Scholar

    [36]

    Shuck C E, Han M K, Maleski K, Hantanasirisakul K, Kim S J, Choi J, Reil W E B, Gogotsi Y 2019 ACS Appl. Nano Mater. 2 3368Google Scholar

    [37]

    Lipatov A, Alhabeb M, Lukatskaya M R, Boson A, Gogotsi Y, Sinitskii A 2016 Adv. Electron. Mater. 2 1600255Google Scholar

    [38]

    Cho K, Pak J, Kim J K, Kang K, Kim T Y, Shin J, Choi B Y, Chung S, Lee T 2018 Adv. Mater. 30 1705540Google Scholar

    [39]

    Zeng L H, Wang M Z, Hu H, Nie B, Yu Y Q, Wu C Y, Wang L, Hu J G, Xie C, Liang F X, Luo L B 2013 ACS Appl. Mater. Interfaces 5 9362Google Scholar

    [40]

    李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 物理学报 71 048501Google Scholar

    Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar

    [41]

    Yadav A, Agrawal J, Singh V 2021 IEEE Photonics Technol. Lett. 33 1065Google Scholar

    [42]

    玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊 2021 物理学报 70 238502Google Scholar

    Xuan X M, Wang J H, Mao Y Q, Ye L J, Zhang H, Li H L, Xiong Y Q, Fan S Q, Kong C Y, Li W J 2021 Acta Phys. Sin. 70 238502Google Scholar

    [43]

    Feng W, Wu J B, Li X L, Zheng W, Zhou X, Xiao K, Cao W W, Yang B, Idrobo J C, Basile L, Tian W Q, Tan P H, Hu P A 2015 J. Mater. Chem. C 3 7022Google Scholar

    [44]

    Sun M X, Yang P F, Xie D, Sun Y L, Xu J L, Ren T L, Zhang Y F 2019 Adv. Electron. Mater. 5 1800580Google Scholar

  • 图 1  (a) C14H31O3P改性Ti3C2Tx的过程示意图; Ti3AlC2 MAX, Ti3C2Tx, C14H31O3P-Ti3C2的XRD衍射图谱(b)及红外光谱(c)

    Fig. 1.  (a) C14H31O3P modification Ti3C2Tx process schematic diagram; XRD diffraction diagram (b) and infrared spectrum (c) of Ti3AlC2 MAX, Ti3C2Tx, C14H31O3P-Ti3C2.

    图 2  Ti3C2Tx, C14H31O3P-Ti3C2的AFM表征(a), (b)和SEM表征(c), (d). C14H31O3P-Ti3C2的XPS谱 (e)宽扫描; (f) Ti 2p的高分辨率; (g) O 1s区的高分辨率; (h) P 2p区的高分辨率

    Fig. 2.  AFM characteristic (a), (b) and SEM characteristics (c), (d) of Ti3C2Tx and C14H31O3P-Ti3C2. XPS spectra of C14H31O3P-Ti3C2 nanosheets: (e) Wide scan; (f) high-resolution of Ti 2p region; (g) high-resolution of O 1s region; (h) high-resolution of P 2p region.

    图 3  C14H31O3P-Ti3C2/Au肖特基结器件 (a) I-V 特性曲线; (b)在808—1342 nm波长下的开关比Ion/Ioff; (c)不同光功率密度下的光电流; (d)光响应度和比探测率; (e) I-t曲线; (f)响应时间和恢复时间

    Fig. 3.  Schottky junction device of C14H31O3P-Ti3C2/Au: (a) I-V characteristic curve; (b) switching ratio Ion/Ioff at 808–1342 nm wavelength; (c) plots of photocurrent changes with different optical power densities; (d) light response and ratio detection rate; (e) I-t characteristic curve; (f) response time and recovery time.

    图 4  (a) C14H31O3P-Ti3C2/Au光电探测器示意图; (b) 肖特基结的能带示意图

    Fig. 4.  (a) Schematic diagram of C14H31O3P-Ti3C2/Au photodetector; (b) schematic energy band diagram of the Schottky.

    表 1  不同光功率下的响应度、比探测率以及外量子效率

    Table 1.  Responsivity, specific detection rate, and external quantum efficiency at different light power.

    ${P/({\rm{m} }{\rm{W} }{\cdot}{\rm{c} }{\rm{m} } }^{-2})$$ R/( $10–1${\rm{A} }{\cdot}{ {\rm{W} } }^{-1}$)$ {D}^{*}/( $107$ {\rm{J}}{\rm{o}}{\rm{n}}{\rm{e}}{\rm{s}}) $$ {\rm{E}}{\rm{Q}}{\rm{E}}/{\text{%}} $
    9.22.84.332.75
    25.22.03.123.62
    44.91.82.620.44
    111.51.01.311.80
    178.30.861.410.00
    下载: 导出CSV
  • [1]

    Tantum S L, Yu Y L, Collins L M 2008 IEEE Geosci. Remote Sens. Lett. 5 103Google Scholar

    [2]

    Xu H H, Liu J, Zhang J, Zhou G D, Luo N Q, Zhao N 2017 Adv. Mater. 29 1700975Google Scholar

    [3]

    Millan M S, Escofet J 2004 Opt. Lett. 29 1440Google Scholar

    [4]

    Jonsson P, Casselgren J, Thornberg B 2015 IEEE Sens. J. 15 1641Google Scholar

    [5]

    Homan K A, Souza M, Truby R, Luke G P, Green C, Vreeland E, Emelianov S 2012 ACS Nano 6 641Google Scholar

    [6]

    Zeng L H, Lin S H, Li Z J, Zhang Z X, Zhang T F, Xie C, Mak C H, Chai Y, Lau S P, Luo L B, Tsang Y H 2018 Adv. Funct. Mater. 28 1705970Google Scholar

    [7]

    Zhuo R R, Zeng L H, Yuan H Y, Wu D, Wang Y G, Shi Z F, Xu T T, Tian Y T, Li X J, Tsang Y H 2019 Nano Res. 12 183Google Scholar

    [8]

    Wang F, Wang Z X, Yin L, Cheng R Q, Wang J J, Wen Y, Shifa T A, Wang F M, Zhang Y, Zhan X Y, He J 2018 Chem. Soc. Rev. 47 6296Google Scholar

    [9]

    Liu J L, Li X, Wang H, Yuan G, Suvorova A, Gain S, Ren Y L, Lei W 2020 ACS Appl. Mater. Interfaces 12 31810Google Scholar

    [10]

    Chao J F, Xing S M, Liu Z D, Zhang X T, Zhao Y L, Zhao L H, Fan Q F 2018 Mater. Res. Bull. 98 194Google Scholar

    [11]

    Marques-Hueso J, Jones T D A, Watson D E, Ryspayeva A, Esfahani M N, Shuttleworth M P, Harris R A, Kay R W, Desmulliez M P Y 2018 Adv. Funct. Mater. 28 1704451Google Scholar

    [12]

    孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明 2022 物理学报 71 066801Google Scholar

    Sun Y H, Mu C Y, Jiang W G, Zhou L, Wang R M 2022 Acta Phys. Sin. 71 066801Google Scholar

    [13]

    Jiang X T, Kuklin A V, Baev A, Ge Y Q, Agren H, Zhang H, Prasad P N 2020 Phys. Rep. Rev. Sec. Phys. Lett. 848 1Google Scholar

    [14]

    Xu H, Ren A B, Wu J, Wang Z M 2020 Adv. Funct. Mater. 30 2000907Google Scholar

    [15]

    Li R Y, Zhang L B, Shi L, Wang P 2017 ACS Nano 11 3752Google Scholar

    [16]

    Fu H C, Ramalingam V, Kim H, Lin C H, Fang X S, Alshareef H N, He J H 2019 Adv. Energy Mater. 9 1900180Google Scholar

    [17]

    Li Y B, Shao H, Lin Z F, Lu J, Liu L Y, Duployer B, Persson P O A, Eklund P, Hultman L, Li M, Chen K, Zha X H, Du S Y, Rozier P, Chai Z F, Raymundo-Pinero E, Taberna P L, Simon P, Huang Q 2020 Nat. Mater. 19 894Google Scholar

    [18]

    Hantanasirisakul K, Zhao M Q, Urbankowski P, Halim J, Anasori B, Kota S, Ren C E, Barsoum M W, Gogotsi Y 2016 Adv. Electron. Mater. 2 1600050Google Scholar

    [19]

    Zhang C F J, Pinilla S, McEyoy N, Cullen C P, Anasori B, Long E, Park S H, Seral-Ascaso A, Shmeliov A, Krishnan D, Morant C, Liu X H, Duesberg G S, Gogotsi Y, Nicolosi V 2017 Chem. Mater. 29 4848Google Scholar

    [20]

    Song W D, Chen J X, Li Z L, Fang X S 2021 Adv. Mater. 33 2101059Google Scholar

    [21]

    Zhang X W, Shao J H, Yan C X, Wang X M, Wang Y F, Lu Z H, Qin R J, Huang X W, Tian J L, Zeng L H 2021 Mater. Des. 207 109850Google Scholar

    [22]

    Hu C Q, Li L, Shen G Z 2021 Chin. J. Chem. 39 2141Google Scholar

    [23]

    Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y 2013 Adv. Funct. Mater. 23 2185Google Scholar

    [24]

    Zhang X, Zhang Z H, Zhou Z 2018 J. Energy Chem. 27 73Google Scholar

    [25]

    Yan L, Zhu J J, Wang B T, He J J, Song H Z, Chu W B, Tretiak S, Zhou L J 2022 Nano Lett. 22 5592Google Scholar

    [26]

    Zha X H, Huang Q, He J, He H M, Zhai J Y, Francisco J S, Du S Y 2016 Sci. Rep. 6 27971Google Scholar

    [27]

    Feng Q, Deng F K, Li K C, Dou M Y, Zou S, Huang F C A 2021 Colloid Surf. A-Physicochem. Eng. Asp. 625 126903Google Scholar

    [28]

    Mutin P H, Guerrero G, Vioux A 2005 J. Mater. Chem. 15 3761Google Scholar

    [29]

    Yang S, Zhang P P, Wang F X, Ricciardulli A G, Lohe M R, Blom P W M, Feng X L 2018 Angew. Chem. Int. Edit. 57 15491Google Scholar

    [30]

    Lin Z Y, Sun D F, Huang Q, Yang J, Barsoum M W, Yan X B 2015 J. Mater. Chem. A 3 14096Google Scholar

    [31]

    Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nat. Rev. Mater. 2 16098Google Scholar

    [32]

    Ye H J, Shao W Z, Zhen L 2013 Colloid Surf. A-Physicochem. Eng. Asp. 427 19Google Scholar

    [33]

    Ye Y T, Yi W C, Liu W, Zhou Y, Bai H, Li J F, Xi G C 2020 Sci. China Mater. 63 794Google Scholar

    [34]

    Jimmy J, Kandasubramanian B 2020 Eur. Polym. J. 122 109367Google Scholar

    [35]

    Xu H, Chen R, Ali M, Lee H, Ko M J 2020 Adv. Funct. Mater. 30 2002739Google Scholar

    [36]

    Shuck C E, Han M K, Maleski K, Hantanasirisakul K, Kim S J, Choi J, Reil W E B, Gogotsi Y 2019 ACS Appl. Nano Mater. 2 3368Google Scholar

    [37]

    Lipatov A, Alhabeb M, Lukatskaya M R, Boson A, Gogotsi Y, Sinitskii A 2016 Adv. Electron. Mater. 2 1600255Google Scholar

    [38]

    Cho K, Pak J, Kim J K, Kang K, Kim T Y, Shin J, Choi B Y, Chung S, Lee T 2018 Adv. Mater. 30 1705540Google Scholar

    [39]

    Zeng L H, Wang M Z, Hu H, Nie B, Yu Y Q, Wu C Y, Wang L, Hu J G, Xie C, Liang F X, Luo L B 2013 ACS Appl. Mater. Interfaces 5 9362Google Scholar

    [40]

    李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 物理学报 71 048501Google Scholar

    Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar

    [41]

    Yadav A, Agrawal J, Singh V 2021 IEEE Photonics Technol. Lett. 33 1065Google Scholar

    [42]

    玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊 2021 物理学报 70 238502Google Scholar

    Xuan X M, Wang J H, Mao Y Q, Ye L J, Zhang H, Li H L, Xiong Y Q, Fan S Q, Kong C Y, Li W J 2021 Acta Phys. Sin. 70 238502Google Scholar

    [43]

    Feng W, Wu J B, Li X L, Zheng W, Zhou X, Xiao K, Cao W W, Yang B, Idrobo J C, Basile L, Tian W Q, Tan P H, Hu P A 2015 J. Mater. Chem. C 3 7022Google Scholar

    [44]

    Sun M X, Yang P F, Xie D, Sun Y L, Xu J L, Ren T L, Zhang Y F 2019 Adv. Electron. Mater. 5 1800580Google Scholar

  • [1] 吴宇阳, 李卫, 任青颖, 李金泽, 许巍, 许杰. 金属Sc修饰Ti2CO2吸附气体分子的第一性原理研究. 物理学报, 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [2] 肖忆瑶, 何佳豪, 陈南锟, 王超, 宋宁宁. 基于负载Fe3O4纳米微球的大尺寸单层二维Ti3C2Tx微波吸收性能. 物理学报, 2023, 72(21): 217501. doi: 10.7498/aps.72.20231200
    [3] 郭越, 孙一鸣, 宋伟东. 多孔GaN/CuZnS异质结窄带近紫外光电探测器. 物理学报, 2022, 71(21): 218501. doi: 10.7498/aps.71.20220990
    [4] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究. 物理学报, 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [5] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器. 物理学报, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [6] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选. 物理学报, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [7] 刘超, 杨岳洋, 南策文, 林元华. MAX及其衍生MXene相碳化物的热电性能及展望. 物理学报, 2021, 70(20): 206501. doi: 10.7498/aps.70.20211050
    [8] 张福建, 陈悦, 高翔, 刘珍, 张忠强. 楔形铜基底-单层石墨烯覆层表面液滴自驱动研究. 物理学报, 2021, 70(20): 200202. doi: 10.7498/aps.70.20210905
    [9] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211048
    [10] 谈溥川, 赵超超, 樊瑜波, 李舟. 自驱动柔性生物医学传感器的研究进展. 物理学报, 2020, 69(17): 178704. doi: 10.7498/aps.69.20201012
    [11] 胡伟达, 李庆, 陈效双, 陆卫. 具有变革性特征的红外光电探测器. 物理学报, 2019, 68(12): 120701. doi: 10.7498/aps.68.20190281
    [12] 张红, 宗奕吾, 杨明成, 赵坤. 自驱动的Janus微球在具有不同障碍物的表面上的运动行为研究. 物理学报, 2019, 68(13): 134702. doi: 10.7498/aps.68.20190711
    [13] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现. 物理学报, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [14] 刘洁, 王禄, 孙令, 王文奇, 吴海燕, 江洋, 马紫光, 王文新, 贾海强, 陈弘. 基于p-n结中反常光电转换现象的新型带间跃迁量子阱红外探测器. 物理学报, 2018, 67(12): 128101. doi: 10.7498/aps.67.20180588
    [15] 齐俊杰, 徐旻轩, 胡小峰, 张跃. 一维纳米氧化锌自驱动紫外探测器的构建与性能研究. 物理学报, 2015, 64(17): 172901. doi: 10.7498/aps.64.172901
    [16] 崔海航, 谭晓君, 张鸿雁, 陈力. 自驱动Janus微球近壁运动特性实验与数值模拟研究. 物理学报, 2015, 64(13): 134705. doi: 10.7498/aps.64.134705
    [17] 娄利飞, 潘青彪, 吴志华. 基于石墨烯用于微弱能量获取的柔性微结构研究. 物理学报, 2014, 63(15): 158501. doi: 10.7498/aps.63.158501
    [18] 王欣娟, 张金凤, 张进城, 郝 跃. AlGaN/GaN肖特基结参数分析与电流运输机理研究. 物理学报, 2008, 57(5): 3171-3175. doi: 10.7498/aps.57.3171
    [19] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷. 近红外单光子探测器. 物理学报, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [20] 陈岩松. 铁电薄膜探测器PbZrTiO3的红外光电响应实验研究. 物理学报, 1998, 47(8): 1378-1382. doi: 10.7498/aps.47.1378
计量
  • 文章访问数:  4092
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-28
  • 修回日期:  2023-05-04
  • 上网日期:  2023-05-05
  • 刊出日期:  2023-07-05

/

返回文章
返回