搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于异步光学采样的电光频率梳时间抖动测量

马博文 戴雯 孟飞 陶家宁 武子铃 石岩青 方占军 胡明列 宋有建

引用本文:
Citation:

基于异步光学采样的电光频率梳时间抖动测量

马博文, 戴雯, 孟飞, 陶家宁, 武子铃, 石岩青, 方占军, 胡明列, 宋有建

Using asynchronous optical sampling to measure timing jitter of electro-optic frequency combs

Ma Bo-Wen, Dai Wen, Meng Fei, Tao Jia-Ning, Wu Zi-Ling, Shi Yan-Qing, Fang Zhan-Jun, Hu Ming-Lie, Song You-Jian
PDF
HTML
导出引用
  • 电光频率梳是一种单频激光器经相位调制构造的光学频率梳, 具有重复频率高、灵活可调等特点, 通过精确的色散控制, 电光频率梳在时域上可以输出超短脉冲激光序列, 其时间抖动特性对于开展精密测量等应用十分重要. 本文提出一种基于双光梳异步光学采样原理测量电光频率梳时间抖动的方案. 建立了时间抖动测量的理论模型并进行数值模拟. 搭建了一台重复频率为10 GHz、脉冲宽度为2.6 ps的电光频率梳, 并开展了时间抖动的测量实验. 测量的直方图分析表明, 电光频率梳的周期抖动为3.86 fs. 测量装置主体为光纤结构, 且不需要高速光电探测器, 有望对电光频率梳、微环频率梳等新型高重频光学频率梳时间抖动的测量与优化起到关键作用.
    Electro-optic frequency combs (EOCs) are optical frequency combs constructed by phase modulation of single frequency lasers. The electro-optic modulated optical frequency combs have shown their unique advantages in many application fields due to their high repetition frequencies, high stabilities and other advantages, especially in precision measurement applications. Through accurate dispersion control, the electro-optical frequency combs can output ultra-short pulse laser sequences in the time domain, and their timing jitter characteristic is very important for precision measurement and other applications. This work presents a scheme to measure the timing jitter of the electro-optic combs directly in the time domain based on the principle of dual-comb asynchronous optical sampling method(ASOPS), which relies on temporal cross-correlation between the high repetition rate electro-optic combs and a low repetition rate passively mode-locked fiber laser. The ASOPS process allows timing jitter measurement in a magnified time scale where the timing jitter at a femtosecond level can be received and visualized by standard low speed electronics. We build a theoretical model for timing jitter measurement, conduct a numerical study to verify the model, and also construct an experimental system to characterize the period jitter of a 10-GHz electro-optic comb.Firstly, the theoretical model for measuring timing jitter is established. In this work, the basic theory of measuring the timing jitter is discussed by analyzing the histogram directly in time domain through using the obtained ASOPS signal. Subsequently, numerical simulations are conducted to simulate the ASOPS process after establishing a sequence of Gaussian pulse train with quantum limited timing jitter. Another pulse train without timing jitter serves as a local oscillator. Through the square law optical detection after sum-frequency generation between LO and LUT, the ASOPS process can be realized and periodic jitter can be obtained directly through histogram statistical analysis. The simulation result is consistent with the theoretical result very well. Finally, an EOC system with cascaded modulators at a repetition rate of 10 GHz is designed and built, and a timing jitter measurement system is designed and built with an all-fiber configuration. The period jitter of 10-GHz EOC is measured by using a 161-MHz mode-locked fiber laser as local oscillator. Histogram analysis shows that the period jitter of the EOC is 3.86 fs.This measurement technique does not require to use the intricate electrical phase-locked circuits or a high-speed photodetector to receive ultrashort pulses of EOC. Like the eye map analysis method commonly used in telecommunication, the histogram analysis can be used to determine the timing jitter approaching the quantum limit. This approach is easy to set up and operate, and it is anticipated to become a standard method of measuring period jitter of ultrashort pulse with high repetition frequency in a laboratory setting. It will be particularly useful for measuring timing jitters of the sources of novel high repetition rate optical frequency combs, such as micro-resonators and electro-optic frequency combs.
      通信作者: 宋有建, yjsong@tju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFF0706002)资助的课题.
      Corresponding author: Song You-Jian, yjsong@tju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFF0706002).
    [1]

    Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar

    [2]

    Hansch T W 2006 Rev. Mod. Phys. 78 1297Google Scholar

    [3]

    Giorgetta F R, Swann W C, Sinclair L C, Baumann E, Coddington I, Newbury N R 2013 Nat. Photonics 7 435

    [4]

    刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 石永强, 曲兴华 2016 物理学报 62 020601Google Scholar

    Liu T Y, Zhang F M, Wu H Z, Li J S, Shi Y Q, Qu X H 2016 Acta Phys. Sin. 62 020601Google Scholar

    [5]

    Liang X, Wu T F, Lin J R, Yang L H, Zhu J G 2023 Nanomanuf. Metrol. 6 61

    [6]

    Ma Q Y, Yu H Y 2023 Nanomanuf. Metrol. 6 36Google Scholar

    [7]

    石俊凯, 纪荣祎, 黎尧, 刘娅, 周维虎 2017 物理学报 66 134203Google Scholar

    Shi J K, Ji R W, Li Y, Liu Y, Zhou W H, 2017 Acta Phys. Sin. 66 134203Google Scholar

    [8]

    Cui Y D, Zhang Y S, Huang L, Zhang A G, Liu Z M, Kuang C F, Tao C N, Chen D R, Liu X, Malomed B A 2023 Phys. Rev. Lett. 130 153801Google Scholar

    [9]

    Martín-Mateos P, Jerez B, Acedo P 2015 Opt. Express 23 21149Google Scholar

    [10]

    Zhang X, Yin K, Zhang J H, Li Y M, Yang J, Zheng X, Jiang T 2020 Asia Communications and Photonics Conference (ACP), Chengdu, China, November 2–5, 2019 p1056

    [11]

    Xu G, Gelash A, Chabchoub A, Zakharov V, Kibler B 2019 Phys. Rev. Lett. 122 84101Google Scholar

    [12]

    Durán V, Andrekson P A, Torres-Company V 2016 Opt. Lett. 41 4190Google Scholar

    [13]

    赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民 2020 物理学报 69 090601Google Scholar

    Zhao X Y, Qu X H, Chen J W, Zheng J H, Wang J D, Zhang F M 2020 Acta Phys. Sin. 69 090601Google Scholar

    [14]

    Zhuang R, Ni K, Wu G H, Hao T, Lu L Z, Li Y, Zhou Q 2023 Laser Photonics Rev. 17 2200353.1

    [15]

    Kim J, Song Y J 2016 Adv. Opt Photonics 8 465Google Scholar

    [16]

    Song Y J, Kim C, Jung K, Kim H, Kim J 2011 Opt. Express 19 14518Google Scholar

    [17]

    Hou D, Lee C C, Yang Z, Schibli T R 2015 Opt. Lett. 40 2985Google Scholar

    [18]

    Carlson D R, Hickstein D D, Zhang W, Metcalf A J, Quinlan F, Diddams S A, Papp S B 2018 Science. 361 1358Google Scholar

    [19]

    Cai Y J, Sohanpal R, Luo Y, Heidt A M, Liu Z X 2023 APL Photonics 8 110802Google Scholar

    [20]

    Watts R T, Murdoch S G, Barry L P 2016 IEEE Photonics J. 8 1

    [21]

    Ishizawa A, Nishikawa T, Goto T, Hitachi K, Sogawa T, Gotoh H 2016 Sci. Rep. 6 24621Google Scholar

    [22]

    Kim J, Richardson D J, Slavik R 2017 Opt. Lett. 42 1536Google Scholar

    [23]

    Ishizawa A, Nishikawa T, Mizutori A, Takara H, Takada A, Sogawa T, Koga M 2013 Opt. Express 21 29186Google Scholar

    [24]

    Lundberg L, Mazur M, Fulop A, Torres-commpany V, Karlsson M, Andrekson P A 2018 Conference on Lasers and Electro-Optics, San Jose, May 13–18, 2018 p2369

    [25]

    Sakamoto T, Kawanishi T, Tsuchiya M 2008 Opt. Lett. 33 890Google Scholar

    [26]

    Metcalf A J, Quinlan F, Fortier T M, Diddams S A, Weiner A M 2015 Electron. Lett. 51 1596Google Scholar

    [27]

    Xiao S J, Hollberg L, Newbury N R, Diddams S A 2008 Opt. Express 16 8498Google Scholar

    [28]

    Peng H F, Lei P, Xie X P, Chen Z Y 2021 Opt. Express 29 42435Google Scholar

    [29]

    Peng H F, Xu Y C, Guo R, Du H Y, Chen J B, Chen Z Y 2018 Asia Communications and Photonics Conference, Hangzhou, China, October 26–29, 2018 p364

    [30]

    Peng H F, Guo R, Du H Y, Xu Y C, Zhang C, Chen J B, Chen Z Y 2018 International Conference on Information Optics and Photonics , Beijing, China, July 8–11, 2018 p1269

    [31]

    He Z W, Li L Z, Zhang J J, Yao J P 2021 Opt. Express 29 33491Google Scholar

    [32]

    Zhai K P, Wang W T, Zhu S, Wen H S, Zhu N H 2023 IEEE Photonics J. 15 1

    [33]

    Bao C Y, Suh M G, Shen B Q, Safak K, Dai A, Wang H M, Wu L, Yuan Z Q, Yang Q F, Matsko A B, Kaertner F X, Vahala K J 2021 Nat. Phys. 17 462Google Scholar

    [34]

    Shi H S, Song Y J, Yu J H, Li R M, Hu M L, Wang C Y 2017 Opt. Express 25 10Google Scholar

  • 图 1  ASOPS法测量时域抖动原理图

    Fig. 1.  Principle diagram of time domain jitter measurement by ASOPS method.

    图 2  模拟中带有抖动的ASOPS信号的叠加结果

    Fig. 2.  The superposition of ASOPS signals with jitter in the simulation.

    图 3  ASOPS法测量待测电光频率梳系统时域抖动实验装置图 (a)待测的电光频率梳系统示意图, PS, 移相器; PC, 偏振控制器; Amp, 功率放大器; IM, 强度调制器; PM, 相位调制器; DC bias, 直流偏压; SMF, 单模光纤; (b)电光频率梳时间抖动测量实验装置图, OFC, 光纤锁模光频梳; EOC, 电光频率梳; BPF, 带通滤波器; Coupler, 保偏光纤耦合器; LPF, 低通滤波器; OC, 光学环形器

    Fig. 3.  Timing jitter test device of electro-optic combs system to be measured by ASOPS method: (a) Schematic diagram of the EOC system to be tested, PS, phase shifter; PC, polarization controller; Amp, power amplifier; IM, intensity modulator; PM, phase modulator; DC bias, DC bias; SMF, single mode fiber; (b) the timming jitter measurement experimental device diagram of electro-optic combs, OFC, optical fiber mode-locked optical frequency combs; EOC, electro-optic frequency combs; BPF, bandpass filter; Coupler, polarization-maintaining fiber coupler; LPF, low pass filter; OC, optical circulator.

    图 4  电光频率梳输出的光谱脉冲和ASOPS采集信号示意图 (a)电光频率梳的输出光谱; (b)电光频率梳经单模光纤压缩后的输出脉冲的自相关曲线及其高斯拟合曲线; (c)采集的ASOPS信号示意图; (d)由采集的脉冲对得到的直方图统计结果

    Fig. 4.  Schematic diagram of spectral pulse output and ASOPS acquisition signal of electro-optic combs: (a) The output spectrum of the electro-optic combs; (b) the autocorrelation curve and Gaussian fitting curve of the output pulse after electro-optic combs compression by single-mode fiber are obtained; (c) schematic diagram of collected ASOPS signals; (d) the statistical results of the histogram obtained from the collected pulses.

    图 5  时间抖动的PSD曲线及累计时间抖动曲线示意图

    Fig. 5.  PSD curve of timing jitter and schematic diagram of cumulative timing jitter curve.

  • [1]

    Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar

    [2]

    Hansch T W 2006 Rev. Mod. Phys. 78 1297Google Scholar

    [3]

    Giorgetta F R, Swann W C, Sinclair L C, Baumann E, Coddington I, Newbury N R 2013 Nat. Photonics 7 435

    [4]

    刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 石永强, 曲兴华 2016 物理学报 62 020601Google Scholar

    Liu T Y, Zhang F M, Wu H Z, Li J S, Shi Y Q, Qu X H 2016 Acta Phys. Sin. 62 020601Google Scholar

    [5]

    Liang X, Wu T F, Lin J R, Yang L H, Zhu J G 2023 Nanomanuf. Metrol. 6 61

    [6]

    Ma Q Y, Yu H Y 2023 Nanomanuf. Metrol. 6 36Google Scholar

    [7]

    石俊凯, 纪荣祎, 黎尧, 刘娅, 周维虎 2017 物理学报 66 134203Google Scholar

    Shi J K, Ji R W, Li Y, Liu Y, Zhou W H, 2017 Acta Phys. Sin. 66 134203Google Scholar

    [8]

    Cui Y D, Zhang Y S, Huang L, Zhang A G, Liu Z M, Kuang C F, Tao C N, Chen D R, Liu X, Malomed B A 2023 Phys. Rev. Lett. 130 153801Google Scholar

    [9]

    Martín-Mateos P, Jerez B, Acedo P 2015 Opt. Express 23 21149Google Scholar

    [10]

    Zhang X, Yin K, Zhang J H, Li Y M, Yang J, Zheng X, Jiang T 2020 Asia Communications and Photonics Conference (ACP), Chengdu, China, November 2–5, 2019 p1056

    [11]

    Xu G, Gelash A, Chabchoub A, Zakharov V, Kibler B 2019 Phys. Rev. Lett. 122 84101Google Scholar

    [12]

    Durán V, Andrekson P A, Torres-Company V 2016 Opt. Lett. 41 4190Google Scholar

    [13]

    赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民 2020 物理学报 69 090601Google Scholar

    Zhao X Y, Qu X H, Chen J W, Zheng J H, Wang J D, Zhang F M 2020 Acta Phys. Sin. 69 090601Google Scholar

    [14]

    Zhuang R, Ni K, Wu G H, Hao T, Lu L Z, Li Y, Zhou Q 2023 Laser Photonics Rev. 17 2200353.1

    [15]

    Kim J, Song Y J 2016 Adv. Opt Photonics 8 465Google Scholar

    [16]

    Song Y J, Kim C, Jung K, Kim H, Kim J 2011 Opt. Express 19 14518Google Scholar

    [17]

    Hou D, Lee C C, Yang Z, Schibli T R 2015 Opt. Lett. 40 2985Google Scholar

    [18]

    Carlson D R, Hickstein D D, Zhang W, Metcalf A J, Quinlan F, Diddams S A, Papp S B 2018 Science. 361 1358Google Scholar

    [19]

    Cai Y J, Sohanpal R, Luo Y, Heidt A M, Liu Z X 2023 APL Photonics 8 110802Google Scholar

    [20]

    Watts R T, Murdoch S G, Barry L P 2016 IEEE Photonics J. 8 1

    [21]

    Ishizawa A, Nishikawa T, Goto T, Hitachi K, Sogawa T, Gotoh H 2016 Sci. Rep. 6 24621Google Scholar

    [22]

    Kim J, Richardson D J, Slavik R 2017 Opt. Lett. 42 1536Google Scholar

    [23]

    Ishizawa A, Nishikawa T, Mizutori A, Takara H, Takada A, Sogawa T, Koga M 2013 Opt. Express 21 29186Google Scholar

    [24]

    Lundberg L, Mazur M, Fulop A, Torres-commpany V, Karlsson M, Andrekson P A 2018 Conference on Lasers and Electro-Optics, San Jose, May 13–18, 2018 p2369

    [25]

    Sakamoto T, Kawanishi T, Tsuchiya M 2008 Opt. Lett. 33 890Google Scholar

    [26]

    Metcalf A J, Quinlan F, Fortier T M, Diddams S A, Weiner A M 2015 Electron. Lett. 51 1596Google Scholar

    [27]

    Xiao S J, Hollberg L, Newbury N R, Diddams S A 2008 Opt. Express 16 8498Google Scholar

    [28]

    Peng H F, Lei P, Xie X P, Chen Z Y 2021 Opt. Express 29 42435Google Scholar

    [29]

    Peng H F, Xu Y C, Guo R, Du H Y, Chen J B, Chen Z Y 2018 Asia Communications and Photonics Conference, Hangzhou, China, October 26–29, 2018 p364

    [30]

    Peng H F, Guo R, Du H Y, Xu Y C, Zhang C, Chen J B, Chen Z Y 2018 International Conference on Information Optics and Photonics , Beijing, China, July 8–11, 2018 p1269

    [31]

    He Z W, Li L Z, Zhang J J, Yao J P 2021 Opt. Express 29 33491Google Scholar

    [32]

    Zhai K P, Wang W T, Zhu S, Wen H S, Zhu N H 2023 IEEE Photonics J. 15 1

    [33]

    Bao C Y, Suh M G, Shen B Q, Safak K, Dai A, Wang H M, Wu L, Yuan Z Q, Yang Q F, Matsko A B, Kaertner F X, Vahala K J 2021 Nat. Phys. 17 462Google Scholar

    [34]

    Shi H S, Song Y J, Yu J H, Li R M, Hu M L, Wang C Y 2017 Opt. Express 25 10Google Scholar

  • [1] 覃俭. 光源相位噪声对高斯玻色采样的影响. 物理学报, 2023, 72(5): 050302. doi: 10.7498/aps.72.20221766
    [2] 范思晨, 杨帆, 阮军. 蓝宝石谐振体内的回音壁模电磁场分布. 物理学报, 2022, 71(23): 234101. doi: 10.7498/aps.71.20221156
    [3] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [4] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双. 双光梳非线性异步光学采样测距中关键参数的数值分析. 物理学报, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [5] 姜海峰. 超稳光生微波源研究进展. 物理学报, 2018, 67(16): 160602. doi: 10.7498/aps.67.20180751
    [6] 桂淮濛, 施卫. 线性模式下GaAs光电导开关的时间抖动特性. 物理学报, 2018, 67(18): 184207. doi: 10.7498/aps.67.20180548
    [7] 刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华. 光学频率梳啁啾干涉实现绝对距离测量. 物理学报, 2016, 65(2): 020601. doi: 10.7498/aps.65.020601
    [8] 项晓, 王少锋, 侯飞雁, 权润爱, 翟艺伟, 王盟盟, 周聪华, 许冠军, 董瑞芳, 刘涛, 张首刚. 利用共振无源腔分析和抑制飞秒脉冲激光噪声的理论和实验研究. 物理学报, 2016, 65(13): 134203. doi: 10.7498/aps.65.134203
    [9] 吴翰钟, 曹士英, 张福民, 曲兴华. 光学频率梳基于光谱干涉实现绝对距离测量. 物理学报, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [10] 王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林. 利用非传统螺旋相位调控高阶涡旋光束的拓扑结构. 物理学报, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [11] 秦鹏, 宋有建, 胡明列, 柴路, 王清月. 基于阿秒抖动光纤锁模激光器的时钟同步. 物理学报, 2015, 64(22): 224209. doi: 10.7498/aps.64.224209
    [12] 丁学利, 李玉叶. 相位噪声诱发神经放电的单次或两次相干共振. 物理学报, 2014, 63(24): 248701. doi: 10.7498/aps.63.248701
    [13] 王楠, 韩海年, 李德华, 魏志义. 光学频率梳空间光谱分辨精度研究. 物理学报, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [14] 曹士英, 孟飞, 林百科, 方占军, 李天初. 长时间精密锁定的掺Er光纤飞秒光学频率梳. 物理学报, 2012, 61(13): 134205. doi: 10.7498/aps.61.134205
    [15] 陈伟, 孟洲, 周会娟, 罗洪. 远程干涉型光纤传感系统的非线性相位噪声分析. 物理学报, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [16] 李博, 谭中伟, 张晓兴. 利用电光相位调制和交叉相位调制制作时间透镜的实验及仿真分析. 物理学报, 2011, 60(8): 084204. doi: 10.7498/aps.60.084204
    [17] 王金东, 魏正军, 张辉, 张华妮, 陈帅, 秦晓娟, 郭健平, 廖常俊, 刘颂豪. 长程光纤传输的时间抖动对相位编码量子密钥分发系统的影响. 物理学报, 2010, 59(8): 5514-5522. doi: 10.7498/aps.59.5514
    [18] 赵 环, 赵研英, 田金荣, 王 鹏, 朱江峰, 令维军, 魏志义. 两台独立飞秒钛宝石振荡器的高精度主动同步研究. 物理学报, 2008, 57(2): 892-896. doi: 10.7498/aps.57.892
    [19] 韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群. 飞秒钛宝石光学频率梳的精密锁定. 物理学报, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
    [20] 王云才. 增益开关半导体激光器在外光注入下脉冲抖动的实验研究. 物理学报, 2003, 52(9): 2190-2193. doi: 10.7498/aps.52.2190
计量
  • 文章访问数:  2252
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-20
  • 修回日期:  2024-05-19
  • 上网日期:  2024-07-09
  • 刊出日期:  2024-07-20

/

返回文章
返回