-
900 nm掺钕光纤激光器可广泛应用于生物医学诊断、激光检测和光谱分析等领域. 钕离子在1060 nm波段四能级跃迁的增益竞争, 严重限制了900 nm三能级掺钕光纤激光器输出功率的提升. 本文设计了一种纤芯直径为27 μm的大模场掺钕实芯双层反谐振光纤, 用于产生高功率900 nm激光. 通过在有源光纤中引入双层反谐振单元结构, 并对光纤结构参数和折射率分布进行优化, 模拟结果表明光纤在880—913 nm波段基模损耗小于0.1 dB/m, 高阶模式损耗大于10 dB/m, 同时在1060 nm波段所有模式损耗达到100 dB/m. 本文提出的掺钕实芯反谐振光纤在900 nm高功率光纤激光器和放大器等领域具有广泛的应用前景.900-nm Nd-doped fiber laser can find widespread applications including biomedical diagnosis, laser detection, and spectral analysis. The four-level gain competition of Nd3+ around 1060 nm severely constrains the laser power scaling of the 900-nm three-level Nd-doped fiber laser. In this work, we propose a large-mode-area Nd-doped double-layer solid-core anti-resonant fiber with a core diameter of 27 μm for generating a high-power 900-nm laser based on the resonant and anti-resonant conditions of anti-resonant fiber. The transmission properties and mode profiles of the designed fiber are analyzed theoretically by using the full-vector finite-element method combined with an optimized mesh size. By introducing the double-layer anti-resonant elements into the active fiber and optimizing the fiber structure parameters and refractive index distribution, the high-order modes are well coupled with cladding modes. Finally, the designed fiber exhibits a confinement loss below 0.1 dB/m for fundamental mode and the confinement losses of all high-order modes are greater than 10 dB/m in 880–913 nm band. More importantly, around 1060 nm, the confinement losses of all modes can reach up to 100 dB/m, which enables the designed Nd-doped fiber to effectively suppress parasitic lasing and even amplified spontaneous emission. The Nd-doped solid-core anti-resonant fiber proposed in this study shows broad application prospects in the fields of 900-nm high-power fiber laser and amplifier. The developed chemical vapor deposition process combined with stack-and-draw technology can be adopted for the fabrication of the designed fiber. In order to ensure the optical performance of the anti-resonant fiber, it is necessary to accurately control the thickness of all anti-resonant tubes, the glass composition of the active core and background area in actual fabrication.
-
Keywords:
- solid-core anti-resonant fiber /
- Nd-doped fiber /
- large-mode-area fiber /
- single-mode fiber
[1] Drobizhev M, Makarov N S, Tillo S E, Hughes T E, Rebane A 2011 Nat. Methods 8 393Google Scholar
[2] Fix A, Ehret G, Löhring J, Hoffmann D, Alpers M 2011 Appl. Phys. B-Lasers O. 102 905Google Scholar
[3] Nölleke C, Raab C, Neuhaus R, Falke S 2018 J. Mol. Spectrosc. 346 19Google Scholar
[4] Bartolacci C, Laroche M, Gilles H, Girard S, Robin T, Cadier B 2010 Opt. Express 18 5100Google Scholar
[5] Leconte B, Gilles H, Robin T, Cadier B, Laroche M 2018 Opt. Express 26 10000Google Scholar
[6] Fang Q, Xu Y, Fu S J, Shi W 2016 Opt. Lett. 41 1829Google Scholar
[7] Bode M, Freitag I, Tünnermann A, Welling H 1997 Opt. Lett. 22 1220Google Scholar
[8] Hohmann J K, Renner M, Waller E H, von Freymann G 2015 Adv. Opt. Mater. 3 1488Google Scholar
[9] Soh D B S, Yoo S, Nilsson J, Sahu J K, Oh K, Baek S, Jeong Y, Codemard C, Dupriez P, Kim J, Philippov V 2004 IEEE J. Quantum Electron. 40 1275Google Scholar
[10] Wang A, George A K, Knight J C 2006 Opt. Lett. 31 1388Google Scholar
[11] Goel C, Yoo S, Chang W K 2023 Results Phys. 49 106491Google Scholar
[12] Tian H, Fu S J, Sheng Q, Xu H C, Zhang S, Shi W, Yao J Q 2023 Results Phys. 46 106281Google Scholar
[13] Tian H, Fu S J, Xu H C, Li J H, Yao Z D, Zhang J X, Shi C D, Sheng Q, Shi W, Yao J Q 2024 Opt. Laser Technol. 171 110443Google Scholar
[14] Zhang X, Gao S F, Wang Y Y, Ding W, Wang P 2021 High Power Laser Sci. Eng. 9 1Google Scholar
[15] Zhang S, Sun S, Sheng Q, Shi W, Yan Z B, Tian H, Yao J Q 2022 J. Lightwave Technol. 40 1137Google Scholar
[16] Xing Z, Wang X, Lou S Q, Tang Z J, Jia H Q, Gu S, Han J H 2021 Opt. Lett. 46 1908Google Scholar
[17] Xing Z, Wang X, Gu S, Lou S Q 2021 Results Phys. 29 104700Google Scholar
[18] He L L, Liang Y C, Gu Y N, Gu Z X, Xia K L, Wang X S, Dai S X, Shen X, Liu Z J 2023 Opt. Express 31 8975Google Scholar
[19] Goel C, Yoo S 2022 Opt. Lett. 47 1045Google Scholar
[20] Jain D, Jung Y, Barua P, Alam S, Sahu J K 2015 Opt. Express 23 7407Google Scholar
[21] Jain D, Alam S, Jung Y, Barua P, Velazquez M N, Sahu J K 2015 Opt. Express 23 28282Google Scholar
[22] Zhang Z, Li Y, Guo Y, Chen D, Liu Z, Zhang Z 2023 International Conference on Optical and Networks, Qufu, China, July 31–August 3, 2023 p1
[23] Huang S W, Ye J W, Xu Y, Li J P, Fu S N, Wang Y C, Qin Y W 2023 Opt. Commun. 530 129208Google Scholar
[24] Sun T R, Su X Y, Meng F C, Wang Z N, Song J L, Zhang C L, Xu T J, Zhang Y H, Zhang H W, Cui M D, Zheng Y 2023 Micromachines 14 1198Google Scholar
-
图 3 d1/dc, d2/dc对于光纤在900 nm处限制损耗的影响 (a) LP01模式损耗; (b) d1/dc = 0.12和d1/dc = 0.2时, LP01模式的模场分布图 (d2/dc = 0.82); (c) LP11模式损耗; (d) 高阶模抑制比
Fig. 3. The influence of d1/dc and d2/dc on fiber CLs at 900 nm: (a) CL of LP01; (b) mode field distributions of LP01 when d1/dc = 0.12 and d1/dc = 0.2 (d2/dc = 0.82); (c) CL of LP11; (d) HOMER.
图 4 900 nm处不同模式有效折射率和损耗随d2/dc变化情况 (a) LP01, LP11, CM模式的有效折射率; (b) LP01, LP11模式的限制损耗, 插图为LP01 (d2/dc = 0.89), LP11 (d2/dc = 0.77) 的模场分布图
Fig. 4. The influence of d2/dc on effective refractive index and CLs of different modes at 900 nm: (a) Effective refractive index of LP01, LP11 and CM; (b) CLs of LP01 and LP11, insets are the mode field distributions of LP01 (d2/dc = 0.89) and LP11 (d2/dc = 0.77).
-
[1] Drobizhev M, Makarov N S, Tillo S E, Hughes T E, Rebane A 2011 Nat. Methods 8 393Google Scholar
[2] Fix A, Ehret G, Löhring J, Hoffmann D, Alpers M 2011 Appl. Phys. B-Lasers O. 102 905Google Scholar
[3] Nölleke C, Raab C, Neuhaus R, Falke S 2018 J. Mol. Spectrosc. 346 19Google Scholar
[4] Bartolacci C, Laroche M, Gilles H, Girard S, Robin T, Cadier B 2010 Opt. Express 18 5100Google Scholar
[5] Leconte B, Gilles H, Robin T, Cadier B, Laroche M 2018 Opt. Express 26 10000Google Scholar
[6] Fang Q, Xu Y, Fu S J, Shi W 2016 Opt. Lett. 41 1829Google Scholar
[7] Bode M, Freitag I, Tünnermann A, Welling H 1997 Opt. Lett. 22 1220Google Scholar
[8] Hohmann J K, Renner M, Waller E H, von Freymann G 2015 Adv. Opt. Mater. 3 1488Google Scholar
[9] Soh D B S, Yoo S, Nilsson J, Sahu J K, Oh K, Baek S, Jeong Y, Codemard C, Dupriez P, Kim J, Philippov V 2004 IEEE J. Quantum Electron. 40 1275Google Scholar
[10] Wang A, George A K, Knight J C 2006 Opt. Lett. 31 1388Google Scholar
[11] Goel C, Yoo S, Chang W K 2023 Results Phys. 49 106491Google Scholar
[12] Tian H, Fu S J, Sheng Q, Xu H C, Zhang S, Shi W, Yao J Q 2023 Results Phys. 46 106281Google Scholar
[13] Tian H, Fu S J, Xu H C, Li J H, Yao Z D, Zhang J X, Shi C D, Sheng Q, Shi W, Yao J Q 2024 Opt. Laser Technol. 171 110443Google Scholar
[14] Zhang X, Gao S F, Wang Y Y, Ding W, Wang P 2021 High Power Laser Sci. Eng. 9 1Google Scholar
[15] Zhang S, Sun S, Sheng Q, Shi W, Yan Z B, Tian H, Yao J Q 2022 J. Lightwave Technol. 40 1137Google Scholar
[16] Xing Z, Wang X, Lou S Q, Tang Z J, Jia H Q, Gu S, Han J H 2021 Opt. Lett. 46 1908Google Scholar
[17] Xing Z, Wang X, Gu S, Lou S Q 2021 Results Phys. 29 104700Google Scholar
[18] He L L, Liang Y C, Gu Y N, Gu Z X, Xia K L, Wang X S, Dai S X, Shen X, Liu Z J 2023 Opt. Express 31 8975Google Scholar
[19] Goel C, Yoo S 2022 Opt. Lett. 47 1045Google Scholar
[20] Jain D, Jung Y, Barua P, Alam S, Sahu J K 2015 Opt. Express 23 7407Google Scholar
[21] Jain D, Alam S, Jung Y, Barua P, Velazquez M N, Sahu J K 2015 Opt. Express 23 28282Google Scholar
[22] Zhang Z, Li Y, Guo Y, Chen D, Liu Z, Zhang Z 2023 International Conference on Optical and Networks, Qufu, China, July 31–August 3, 2023 p1
[23] Huang S W, Ye J W, Xu Y, Li J P, Fu S N, Wang Y C, Qin Y W 2023 Opt. Commun. 530 129208Google Scholar
[24] Sun T R, Su X Y, Meng F C, Wang Z N, Song J L, Zhang C L, Xu T J, Zhang Y H, Zhang H W, Cui M D, Zheng Y 2023 Micromachines 14 1198Google Scholar
计量
- 文章访问数: 1510
- PDF下载量: 48
- 被引次数: 0