搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习和第一性原理计算的Janus材料的预测

张桥 谭薇 宁勇祺 聂国政 蔡孟秋 王俊年 朱慧平 赵宇清

引用本文:
Citation:

基于机器学习和第一性原理计算的Janus材料的预测

张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清

Prediction of Magnetic Janus Materials Based on Machine Learning and First-Principles Calculations

Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing
PDF
HTML
导出引用
  • 寻找尺寸小、稳定性高和易操控的纳米磁结构—磁斯格明子(magnetic skyrmion), 是发展下一代高密度、高速度和低能耗非易失性信息存储器件核心存储单元的关键.磁性斯格明子根据其拓扑产生机制, 可以由非中心对称结构诱导的DMI(Dzyaloshinskii–Moriya Interaction)作用项产生. 二维Janus结构具有两个不同面的原子层, 可以形成垂直内建电场, 打破中心空间反演对称性. 因此寻找具有本征磁性的二维Janus材料是研究新型磁存储的基础. 本文基于晶体材料数据库Materials Project中的1179种六角晶系ABC型Janus材料数据, 以其元素组分信息为特征描述符, 构建了随机森林, 梯度提升决策树, 极端梯度提升和极端随机树等四种机器学习模型, 基于上述模型对晶格常数、形成能和磁矩分类进行了预测, 并采用十折交叉验证法对模型进行了评估. 梯度提升决策树在磁矩分类预测显示出最高的精度和泛化能力. 最后, 基于上述模型对尚未发现的82018种二维Janus材料进行了预测, 筛选得到4024种具有热稳定性的高磁矩结构, 并基于第一性原理的方法对其中随机抽样的13种高磁矩结构进行了计算验证. 本研究为二维Janus材料磁矩分类和高通量筛选训练了有效的机器学习模型, 加速了二维 Janus 结构磁性的探索.
    Discovering the compact、stable and easily controllable nanoscale non-trivial topological magnetic structures---magnetic skyrmions,is the key to develop next-generation high-density, high-speed,and low-energy non-volatile information storage devices.Based on the topological generation mechanism,magnetic skyrmions could be generated through the Dzyaloshinskii–Moriya Interaction (DMI) induced by space-reversal symmetry broken.Two dimensional (2D) non-centrosymmetric Janus could generate vertical built-in electric fields to break spatial inversion symmetry. Therefore, seeking 2D Janus with intrinsic magnetism is fundamental to develop the novel chiral magnetic storage technologies.In this work, we combined detailed machine learning techniques and first-principles calculations to discover the magnetism of the unexplored 2D janus. we first collected 1179 2D hexagonal ABC-type Janus based on the Materials Project database, and used elemental composition as feature descriptors to construct four machine learning models: Random Forest (RF), Gradient Boosting Decision Trees (GBDT), Extreme Gradient Boosting (XGB), and Extra Trees (ET). These algorithms and models were constructed to predict lattice constants, formation energies, and magnetic moment, via hyperparameter optimization and ten-fold cross-validation. GBDT exhibits the highest accuracy and best prediction performance for magnetic moment classification. Subsequently, the collected data of 82,018 yet-undiscovered 2D Janus,were input into the trained models to generate 4,024 high magnetic moment 2D Janus with thermal stability. First-principles calculations were employed to validate random sample of 13 Janus with high magnetic moment. This study provides an effective machine learning framework for magnetic moment classification and high-throughput screening of 2D Janus, accelerating the exploration of magnetic properties in 2D Janus structures.
  • 图 1  机器学习结合DFT发掘高磁矩Janus材料步骤

    Fig. 1.  Steps for discovering high magnetic moment Janus materials by combining machine learning with DFT.

    图 2  六角晶系ABC型Janus材料原子结构的(a)侧视图和(b)俯视图

    Fig. 2.  (a) Side view and (b)top view of atomic structures of hexagonal ABC-type Janus materials.

    图 3  数据集中二维 Janus 材料的(a)晶格常数 ab, (b)晶格常数 c, (c)形成能和(d)总磁矩的分布

    Fig. 3.  The distribution of (a) lattice constants a and b, (b) lattice constant c, (c) formation energy and (d) total magnetic moment of the dataset of 2D Janus materials.

    图 4  晶格常数预测: 最优模型在十折交叉验证中的散点图. (a) Lattice a = b预测任务最优模型: 极端随机树, (b) Lattice c预测任务最优模型: 极端梯度提升

    Fig. 4.  Prediction of lattice constants: scatter plots for the optimal models in ten-fold cross-validation. (a) The optimal model for the lattice a=b prediction task:ET, (b) The optimal model for the lattice c prediction task:XGB.

    图 5  形成能预测: 四种模型在十折交叉验证上的散点图. (a)随机森林, (b)梯度提升决策树, (c)极端梯度提升(d)极端随机树

    Fig. 5.  Prediction of formation energy: scatter plots for four models in ten-fold cross-validation. (a) RF (b) GBDT, (c) XGB, (d) ET.

    图 6  磁矩分类预测: 四种模型在十折交叉验证上的混淆矩阵. (a)随机森林, (b)梯度提升决策树, (c)极端梯度提升(d)极端随机树

    Fig. 6.  Prediction of magnetic moment classification: confusion matrices for four models in ten-fold cross-validation. (a) RF, (b) GBDT, (c) XGB, (d) ET.

    图 7  13种二维六角晶系Janus原子结构的侧视图

    Fig. 7.  Side view of atomic structures of 13 two-dimensional hexagonal Janus materials.

    表 1  不同训练任务中机器学习最优模型的超参数

    Table 1.  The hyperparameters of the optimal machine learning models in various training tasks.

    模型超参数
    GBDT(磁矩分类)learning_rate = 0.01603011, max_depth = 5, n_estimators = 272, subsample = 0.69895067
    GBDT(形成能)learning_rate = 0.02, max_depth = 6, n_estimators = 353, subsample = 0.93030056
    ET(晶格常数ab)max_depth = 10, max_features = 0.60, n_estimators = 100,
    min_samples_leaf = 2, min_samples_split = 4
    XGB(晶格常数c)learning_rate = 0.02, n_estimators = 300, max_depth = 5,
    subsample = 0.8, colsample_bytree = 0.49613519
    下载: 导出CSV

    表 2  晶格常数预测

    Table 2.  Prediction of lattice constants.

    模型 Lattice a=b Lattice c
    MAE RMSE $R^2$ MAE RMSE $R^2$
    RF 0.5485 0.8104 0.7375 0.6491 1.0001 0.6872
    GBDT 0.4477 0.7350 0.7829 0.6679 0.9924 0.6923
    XGB 0.5427 0.7968 0.7462 0.5953 0.9474 0.7186
    ET 0.3469 0.6808 0.8137 0.6534 1.0103 0.6817
    下载: 导出CSV

    表 3  形成能预测: 四种机器学习模型的评价指标

    Table 3.  The Prediction of formation energy: evaluation metrics of four machine learning models.

    模型MAERMSE$R^2$
    RF0.10540.16970.8671
    GBDT0.07980.14110.9070
    XGB0.09590.15330.8930
    ET0.11200.17010.8657
    下载: 导出CSV

    表 4  磁矩分类预测: 四种机器学习模型的评价指标

    Table 4.  Prediction of magnetic moment classification.: evaluation metrics of four machine learning models.

    模型AccuracyPrecisionRecallF1 score
    RF0.87700.84590.76360.7862
    GBDT0.89480.84980.81820.8263
    XGB0.87620.83980.76970.7883
    ET0.87950.83920.77780.7965
    下载: 导出CSV

    表 5  13种结构优化后的六角晶系ABC型Janus材料的晶格常数, 形成能和磁矩

    Table 5.  Optimized lattice constants, formation energies and magnetic moments of 13 two-dimensional hexagonal ABC-type Janus materials.

    FormulaLattice constantsFormation energy (eV)$ |\mu| $ ($ \mu_B $)
    a = b(Å)c(Å) ABC
    ErFeTb3.3518.25–2.022.513.036.24
    FeNO2.9215.00–11.871.170.080.47
    HoRuSr4.9018.79–6.663.790.020.05
    DyOsSr4.1818.87–6.894.890.000.13
    EuSbSr5.4318.69–5.536.850.010.05
    HoIrSr4.5818.79–7.243.720.000.05
    LiUZn2.8918.13–0.440.001.650.01
    PuSZn4.5218.13–6.755.610.100.01
    GdKU7.4618.13–2.397.330.002.96
    LuNbTi3.0218.13–1.760.020.281.67
    GdHfSe5.0318.93–8.467.330.340.02
    NaTbZn4.6518.69–1.870.026.000.00
    HoNpSr3.6918.46–1.803.814.380.08
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhang Z W, Lang Y F, Zhu H P, Li B, Zhao Y Q, Wei B, Zhou W X 2024 Phys. Rev. Appl. 21 064012Google Scholar

    [3]

    Liu B, Feng X X, Long M Q, Cai M Q, Yang J L 2022 Phys. Rev. Appl. 18 054036Google Scholar

    [4]

    Xiong X J, Zhong F, Zhang Z W, Chen F, Luo J L, Zhao Y Q, Zhu H P, Jiang S L 2024 Acta Phys. Sin. 73 137101Google Scholar

    [5]

    Zhao Y Q, Liu Z S, Nie G Z, Zhu Z H, Chai Y F, Wang J N, Cai M Q, Jiang S L 2021 Appl. Phys. Lett. 118 173104Google Scholar

    [6]

    Lang Y F, Zou D F, Xu Y, Jiang S L, Zhao Y Q, Ang Y S 2024 Appl. Phys. Lett. 124 052903Google Scholar

    [7]

    Liao C S, Ding Y F, Zhao Y Q, Cai M Q 2021 Appl. Phys. Lett. 119 182903Google Scholar

    [8]

    Tan W, Zhang Z W, Zhou X Y, Yu Z L, Zhao Y Q, Jiang S L, Ang Y S 2024 Phys. Rev. Mater. 8 094414Google Scholar

    [9]

    Liang J H, Wang W W, Du H F, Hallal A, Garcia K, Chshiev M, Fert A, Yang H X 2020 Phys. Rev. B 101 184401Google Scholar

    [10]

    Zhang S Q, Xu R Z, Luo N N, Zou X L 2021 Nanoscale 13 1398Google Scholar

    [11]

    Dai C Y, He P, Luo L X, Zhan P X, Guan B, Zheng J 2023 Sci. China Mater. 66 859Google Scholar

    [12]

    Wang P, Zong Y X, Wen H Y, Xia J B, Wei Z M 2021 Acta Phys. Sin. 70 026801Google Scholar

    [13]

    Ren K, Wang K, Zhang G 2022 ACS Appl. Electron. Mater. 4 4507Google Scholar

    [14]

    Peng Z L, Huang J X, Guo Z G 2021 Nanoscale 13 18839Google Scholar

    [15]

    Zhang L, Yang Z J F, Gong T, Pan R K, Wang H D, Guo Z N, Zhang H, Fu X 2020 J. Mater. Chem. A 8 8813Google Scholar

    [16]

    Vafaeezadeh M, Thiel W R 2022 Angew. Chem. Int. Edit. 6 1 e202206403

    [17]

    Mukherjee T, Kar S, Ray S 2022 J. Mater. Res. 37 3418Google Scholar

    [18]

    Li C Q, An Y K 2022 Phys. Rev. B 106 115417Google Scholar

    [19]

    Zhang L, Zhao Y, Liu Y Q, Gao G Y 2023 Nanoscale 15 18910Google Scholar

    [20]

    Xu L J, Wan W H, Peng Y R, Ge Y F, Liu Y 2024 Ann. Phys. 536 2300388Google Scholar

    [21]

    Gao Z Y, Mao G Y, Chen S Y, Bai Y, Gao P, Wu C C, Gates I D, Yang W J, Ding X L, Yao J X 2022 Phys. Chem. Chem. Phys. 24 3460Google Scholar

    [22]

    Liu H, Sun J T, Liu M, Meng S 2018 J. Phys. Chem. Lett. 9 6709Google Scholar

    [23]

    Nelson J, Sanvito S 2019 Phys. Rev. Mater. 3 104405Google Scholar

    [24]

    Belot J F, Taufour V, Sanvito S, Hart G L 2023 Appl. Phys. Lett. 123 042405Google Scholar

    [25]

    Miyazato I, Tanaka Y, Takahashi K 2018 J. Phys.: Condens. Matter 30 06L

    [26]

    Lu S H, Zhou Q H, Guo Y L, Zhang Y H, Wu Y L, Wang J L 2020 Adv. Mater. 32 2002658Google Scholar

    [27]

    Ma X Y, Lyu H Y, Hao K R, Zhao Y M, Qian X F, Yan Q B, Su G 2021 Sci. Bull. 66 233Google Scholar

    [28]

    Huang T, Yang Z X, Li L, Wan H, Leng C, Huang G F, Hu W Y, Huang W Q 2024 J. Phys. chem. Lett. 15 2428Google Scholar

    [29]

    Chaney G, Ibrahim A, Ersan F, Çakır D, Ataca C 2021 ACS Appl. Mater. Interfaces 13 36388Google Scholar

    [30]

    Yan X H, Zheng J M, Zhao X, Zhao P J, Guo P, Jiang Z Y 2024 Phys. Status Solidi Rapid Res. Lett. 18 2300468Google Scholar

    [31]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [32]

    Chen P Y, Lam C H, Edmondson B, Posadas A B, Demkov A A, Ekerdt J G 2019 J. Vac. Sci. Technol. A 37 050902Google Scholar

    [33]

    Khushi M, Shaukat K, Alam T M, Hameed I A, Uddin S, Luo S, Yang X, Reyes M C 2021 IEEE Access 9 109960Google Scholar

    [34]

    Ward L, Dunn A, Faghaninia A, Zimmermann N E, Bajaj S, Wang Q, Montoya J, Chen J, Bystrom K, Dylla M, Chard K, Asta M, Persson K A, Snyder G J, Foster I, Jain A 2018 Comp. Mater. Sci. 152 60Google Scholar

    [35]

    Chen J, Song Y Y, Li S Z, Que Z X, Zhang W B 2023 Sci. China Technol. Sci. 1 011002

    [36]

    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E 2011 J. Mach. Learn. Res. 12 2825

    [37]

    Ester M, Kriegel H P, Xu X 2023 Geogr. Anal. 55 207Google Scholar

    [38]

    Wu J, Chen X Y, Zhang H, Xiong L D, Lei H, Deng S H 2019 J. Electron. Sci. Technol. 17 26

    [39]

    Ma Q Y, Wan W H, Ge Y F, Li Y M, Liu Y 2022 J. Magn. Magn. Mater. 605 172314

    [40]

    Yin W J, Tan H J, Ding P J, Wen B, Li X B, Teobaldi G, Liu L M 2021 Mater. Adv. 2 7543Google Scholar

  • [1] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, doi: 10.7498/aps.73.20231618
    [2] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算. 物理学报, doi: 10.7498/aps.72.20222300
    [3] 罗启睿, 沈一凡, 罗孟波. 高分子塌缩相变和临界吸附相变的计算机模拟和机器学习. 物理学报, doi: 10.7498/aps.72.20231058
    [4] 吕程烨, 陈英炜, 谢牧廷, 李雪阳, 于宏宇, 钟阳, 向红军. 外加电磁场下周期性体系的第一性原理计算方法. 物理学报, doi: 10.7498/aps.72.20231313
    [5] 万新阳, 章烨辉, 陆帅华, 吴艺蕾, 周跫桦, 王金兰. 机器学习加速搜寻新型双钙钛矿氧化物光催化剂. 物理学报, doi: 10.7498/aps.71.20220601
    [6] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测. 物理学报, doi: 10.7498/aps.71.20211625
    [7] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, doi: 10.7498/aps.70.20210879
    [8] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20202043
    [9] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, doi: 10.7498/aps.70.20201636
    [10] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20201939
    [11] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190503
    [12] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190509
    [13] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, doi: 10.7498/aps.68.20191258
    [14] 张薇, 陈凯彬, 陈震东. Cr二维单层薄片中Jahn-Teller效应的第一性原理研究. 物理学报, doi: 10.7498/aps.67.20181669
    [15] 潘凤春, 林雪玲, 陈焕铭. 阳离子空位磁矩起因探讨. 物理学报, doi: 10.7498/aps.64.176101
    [16] 刘越颖, 周铁戈, 路远, 左旭. 第一主族元素(Li,Na,K)和第二主族元素(Be,Mg,Ca) 掺杂二维六方氮化硼单层的第一性原理计算研究. 物理学报, doi: 10.7498/aps.61.236301
    [17] 李德俊, 米贤武, 邓科. 一维铁磁链中量子孤波的能级和磁矩. 物理学报, doi: 10.7498/aps.59.7344
    [18] 赵文杰, 杨 致, 闫玉丽, 雷雪玲, 葛桂贤, 王清林, 罗有华. 密度泛函理论计算GenFe(n=1—8)团簇的基态结构及其磁性. 物理学报, doi: 10.7498/aps.56.2596
    [19] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, doi: 10.7498/aps.56.4817
    [20] 赵文杰, 王清林, 任凤竹, 罗有华. 第一性原理计算ZrnFe(n=2—13)团簇的基态结构及其磁性. 物理学报, doi: 10.7498/aps.56.5746
计量
  • 文章访问数:  240
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-11
  • 修回日期:  2024-10-14
  • 上网日期:  2024-10-29

/

返回文章
返回