搜索

x
中国物理学会期刊

颗粒尺寸对纳米流体自然对流模式影响的格子Boltzmann方法模拟

CSTR: 32037.14.aps.73.20241332

Lattice Boltzmann method simulated effect of nanoparticle size on natural convection patterns of nanofluids

CSTR: 32037.14.aps.73.20241332
PDF
HTML
导出引用
  • 采用无量纲格子玻尔兹曼(non-dimensional lattice Boltzmann method, NDLBM)对方腔内纳米流体的自然对流进行数值模拟, 讨论克努森数(10^-6 \leqslant Kn_\rmf,\rms \leqslant 10^4)、瑞利数(10^3 \leqslant Ra_\rmf,\rmL \leqslant 10^6)、颗粒体积分数(10^-2 \leqslant \phi_\rms \leqslant 10^-1)等参数对纳米流体流动和传热的影响. 结果表明: 在不同Ra_\rmf,\rmL下, 颗粒粒径对传热效率的影响是不同的. 在低Ra_\rmf,\rmL的热传导区间, 颗粒粒径对传热影响较小; 在高Ra_\rmf,\rmL的热对流区间, 较大的颗粒粒径显著提升了流动强度和传热效率. 若保持Ra_\rmf,\rmL和\phi_\rms不变, 随着颗粒粒径的减小, 纳米流体的传热方式由热传导转变为热对流. 此外, 针对高Ra_\rmf,\rmL的热对流区间, 在兼顾了导热和流动性的情况下, 最大传热效率所对应的颗粒体积分数为\phi_\rms = 8 \text%. 最后, 通过分析平均努塞尔数\overline Nu_\rmf,\rmL和纳米流体相较于基液增加传热率Re_\rmn,\rmf随不同无量纲参数变化的三维等值面图, 发现\overline Nu_\rmf,\rmL和Re_\rmn,\rmf的极值均出现在颗粒粒径为Kn_\rmf,\rms = 10^-1. 基于数值结果, 构建\overline Nu_\rmf,\rmL与Kn_\rmf,\rms , Ra_\rmf,\rmL, \phi_\rms之间的函数关系式, 揭示了这些无量纲参数对传热性能的影响.

     

    In this work, numerical simulation of natural convection of nanofluids within a square enclosure are conducted by using the non-dimensional lattice Boltzmann method (NDLBM). The effects of key governing parameters Knudsen number (10^-6 \leqslant Kn_\rmf,\rms \leqslant 10^4), Rayleigh number (10^3 \leqslant Ra_\rmf,\rmL \leqslant 10^6), and nanoparticle volume fraction (10^-2 \leqslant \phi_\rms \leqslant 10^-1) on the heat and mass transfer of nanofluids are discussed. The results show that in the low Ra_\rmf,\rmL conduction dominated regime, the nanoparticle size has little effect on heat transfer, whereas in the high Ra_\rmf,\rmL convection dominated regime, larger nanoparticle size significantly enhances flow intensity and heat transfer efficiency. For fixed Ra_\rmf,\rmL and \phi_\rms, the heat transfer patterns change from conduction to convection dominated regime with Kn_\rmf,\rms increasing. The influence of nanoparticle volume fraction is also investigated, and in the convection-dominated regime, the maximum heat transfer efficiency is achieved when \phi_\rms = 8 \text%, balancing thermal conduction and drag fore of nanofluid. Additionally, by analyzing the full maps of mean Nusselt number (\overline Nu_\rmf,\rmL) and the enhancement ratio related to the base fluid (Re_\rmn,\rmf), the maximum value of \overline Nu_\rmf,\rmL and Re_\rmn,\rmf occur when the nanoparticle size is Kn_\rmf,\rms = 10^-1 for both conductive and convection dominated regime. To ascertain the effects of all key governing parameters on \overline Nu_\rmf,\rmL, a new empirical correlation is derived from the numerical results, providing a more in-depth insight into how these parameters influence on heat transfer performance.

     

    目录

    /

    返回文章
    返回