搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压导致纳米TiO2形变的电子显微研究

王飞 李全军 胡阔 刘冰冰

引用本文:
Citation:

高压导致纳米TiO2形变的电子显微研究

王飞, 李全军, 胡阔, 刘冰冰

Electron microscopic study on high-pressure induced deformation of nano-TiO2

Wang Fei, Li Quan-Jun, Hu Kuo, Liu Bing-Bing
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • α-PbO2相TiO2高压相具有适宜的带隙能和可见光范围的光催化能力, 是一种适用于可见光、高效且环保的光催化材料. 本文使用金刚石对顶压砧对锐钛矿纳米球进行加压-卸压处理得到了α-PbO2相TiO2高压相. 利用透射电子显微镜对比初始样品和卸压样品, 观察结果表明晶粒发生了明显形变, 高分辨图显示其晶粒中存在大量[100]方向层错和形变孪晶, 其中亚微米级晶粒中形成了透镜形片层结构的形变孪晶带; 纳米级晶粒中形成了扇形多重形变孪晶. 研究表明高压下锐钛矿TiO2可以发生明显的形变, 其形变的微观机制与金属类似, 主要为形变孪晶和层错滑移, 形变孪晶的形成存在明显的尺寸效应. 这些结果为TiO2高压相变的尺寸效应研究提供了一个新的切入点, 同时还为制备孪晶α-PbO2相TiO2高压相提供了方法.
    The high-pressure α-PbO2 phase of TiO2 has suitable band gap and photocatalytic capability in the visible light range, which is an environmentally friendly and efficient photocatalytic material. In this work, α-PbO2 phase of TiO2 is obtained by the pressure-relief treatment of anatase nanospheres through using diamond anvil cell, and transmission electron microscope (TEM) observation shows the obvious deformation of TiO2 nanospheres. High-esolution TEM shows that there are a large number of stacking faults along the [100] direction and deformation twins in the grain. Specifically, the deformation twin band with lens lamellar structure is formed in the submicron grain. The fan-shaped multiple deformation twins are formed in the nanocrystalline grains. This study shows that anatase TiO2 can be deformed under high pressure, and its micro mechanism of deformation is similar to metal’s, mainly including deformation twins and stacking fault slip. There is obvious size effect in the formation of deformation twins. These results provide a new breakthrough point for the study of the size effect of high-pressure phase transformation of TiO2, and also point out an experimental direction for preparing the twin high-pressure α-PbO2 phase.
      通信作者: 李全军, liquanjun@jlu.edu.cn
      Corresponding author: Li Quan-Jun, liquanjun@jlu.edu.cn
    [1]

    Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Chen H M, Lu G Q 2008 Nature 453 638Google Scholar

    [2]

    Etgar L, Zhang W, Gabriel S, Hickey S G, Nazeeruddin M K, Eychmuller A, Liu B, Gratzel M 2012 Adv. Mater. 24 2202Google Scholar

    [3]

    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269Google Scholar

    [4]

    Chen X, Mao S S 2007 Chem. Rev. 107 2891Google Scholar

    [5]

    Chen X B, Liu L, Huang F Q 2015 Chem. Rev. 44 1861Google Scholar

    [6]

    Dachille F, Dimons P Y, Roy R 1968 Am. Mineral. 53 1929

    [7]

    Ohsaka T, Yamaoka S, Shimomura O 1979 Solid State Commun. 30 345Google Scholar

    [8]

    Lagarec K, Desgreniers S 1995 Solid State Commun. 94 519Google Scholar

    [9]

    Arlt T, Bermejo M, Blanco M A, Gerward L, Jiang J, Olsen J S, Recio J M 2000 Phys. Rev. B 61 14414Google Scholar

    [10]

    Simons P Y, Dachille F 1967 Acta Crystallogr. 23 334Google Scholar

    [11]

    Jamieson J C, Olinger B 1968 Science 161 893Google Scholar

    [12]

    Hearne G R, Zhao J, Dawe A M, Pischedda V, Maaza, Nieuwoudt M K, Kibasomba P, Nemraoui O, Comins J D, Witcomb M J 2004 Phys. Rev. B 70 134102Google Scholar

    [13]

    Swamy V, Kuznetsov A, Dubrovinsky L S, Caruso R A, Shchukin D G, Muddle B C 2005 Phys. Rev. B 71 184302Google Scholar

    [14]

    Pischedda V, Hearne G R, Dawe A M, Lowther J E 2006 Phys. Rev. Lett. 96 035509Google Scholar

    [15]

    Swamy V, Kuznetsov A, Dubrovinsky L S, McMillan P F, Prakapenka V B, Shen G, Muddle B C 2006 Phys. Rev. Lett. 96 135702Google Scholar

    [16]

    Swamy V, Kuznetsov A Y, Dubrovinsky L S, Kurnosov A, Prakapenka V B 2009 Phys. Rev. Lett. 103 075505Google Scholar

    [17]

    Wang Y J, Zhao Y S, Zhang J Z, Xu H W, Wang L P, Luo S N, Daemen L L 2008 J. Phys. Condens. Mater. 20 125224Google Scholar

    [18]

    Sekiya T, Ohta S, Kamei S, Hanakawa M, Kurita S 2001 J. Phys. Chem. Solids 62 717Google Scholar

    [19]

    Li Q J, Cheng B Y, Yang X, Liu R, Liu B, Liu J, Chen Z Q, Zou B, Cui T, Liu B B 2013 J. Phys. Chem. C 117 8516Google Scholar

    [20]

    Huang Y W, Chen F J, Li X, Yuan Y, Dong H N, Samanta S, Yu Z H, Rahman S, Zhang J, Yang K, Yan S, Wang L 2016 J. Appl. Phys. 119 215903Google Scholar

    [21]

    Sun Q B, Huston L Q, Frankcombe T J, Bradby J E, Lu T, Yu D H, Zhou C, Fu Z X, Liu Y 2017 Cryst. Growth Des. 17 2529Google Scholar

    [22]

    Razavi-Khosroshahi H, Edalati K, Arita M, Horita Z, Fuji M 2016 Scripta Materialia 124 59Google Scholar

    [23]

    Razavi-Khosroshahi H, Edalati K, Hirayama M, Emami H, Arita M, Yamauchi M, Hagiwara H, Ida S, Ishihara T, Akiba E, Horita Z, Fuji M 2016 ACS Catal. 6 5103Google Scholar

    [24]

    Chao L, Zhang X, Duan G, Jian T, Liu Q 2014 J. Mater. Sci. Technol. 30 41Google Scholar

    [25]

    Meyers M A, Andrade U, Chokshi A H T 1995 Metal Mater Trans 26 2881Google Scholar

    [26]

    Song M, Zhou G, Lu N, Lee J, Nakouzi E, Wang H, Li D S 2020 Science 367 40Google Scholar

    [27]

    Liao X Z, Zhao Y H, Srinivasan S G, Zhu Y T, Valiev R Z, Gunderov D V 2004 Appl. Phys. Lett. 84 592Google Scholar

    [28]

    Zhu Y T, Liao X Z, Valiev R Z 2005 Appl. Phys. Lett. 86 103112Google Scholar

    [29]

    Tian Y, Xu B, Yu D, Ma Y, Wang Y, Jiang Y, Hu W, Tang C, Gao Y, Luo K, Zhao Z, Wang L M, Wen B, He J, Liu Z 2013 Nature 493 385Google Scholar

    [30]

    Huang Q, Yu D, Xu B, Hu W, Ma Y, Wang Y, Zhao Z, Wen B, He J, Liu Z, Tian Y 2014 Nature 510 250Google Scholar

    [31]

    Hall E O 1951 Proc. Phys. Soc. London B 64 747Google Scholar

    [32]

    Petch N J 1953 J. Iron Steel Ins. 174 25

    [33]

    Tse J S, Klug D D, Gao F M 2006 Phys. Rev. B 73 140102Google Scholar

    [34]

    Halperin W P 1986 Rev. Mod. Phys. 58 533Google Scholar

    [35]

    Gerberich W W, Mook W M, Perrey C R, Carter C B, Baskes M I, Mukherjee R, Gidwani A, Heberlein J, Mc- Murry P H, Girshick S L 2003 J. Mech. Phys. Solids. 51 979Google Scholar

    [36]

    Xu J, Teng F, Xu C Y, Yang Y, Yang L M, Kan Y D 2015 J. Phys. Chem. C 119 13011Google Scholar

  • 图 1  (a) 原始TiO2样品TEM明场像; (b) 原始TiO2样品SAED环; (c) 原始样品单晶球的TEM明场像和[010]方向SAED花样, 单晶球直径72 nm; (d) 原始样品单晶球的TEM明场像和[131]方向SAED花样, 单晶球直径63 nm

    Fig. 1.  (a) TEM bright field image of the TiO2 sample uncompressed; (b) SAED patterns of the TiO2 sample uncompressed; (c) TEM bright field image and SAED patterns are acquired from the single-crystalline along the [110] zone axis, the diameter dimension of single-crystalline is 72 nm; (d) TEM bright field image and SAED patterns are acquired from the single-crystalline along the [131] zone axis, the diameter dimension of single-crystalline is 63 nm.

    图 2  (a) TiO2加压过程拉曼光谱; (b) TiO2卸压过程拉曼光谱; (c) TEM截面样品低倍形貌, 加压方向如白色箭头所示; (d) 卸压TiO2样品TEM明场像; (e) 卸压TiO2样品SAED环

    Fig. 2.  (a) Raman spectra for TiO2 upon compression; (b) Raman spectra for TiO2 upon decompression; (c) TEM image of section samples, the pressurization direction is shown by the white arrow; (d) TEM bright field image of the TiO2 sample decompressed; (e) SAED patterns of the TiO2 sample decompressed.

    图 3  (a) 1#晶粒[010]方向TEM明场像, 6条孪晶界TB1—TB6位置如箭头所示; (b) 1#晶粒TB2的HRTEM; (c) 1#晶粒内TB2的FFT; (d) 2#晶粒[111]方向TEM明场像, 2条孪晶界TB1和TB2位置如箭头所示; (e) 2#晶粒内TB2的HRTEM; (f) 2#晶粒TB2的FFT; (g) 3#晶粒[111]方向TEM明场像, 1条孪晶界TB位置如箭头所示; (h) 3#晶粒TB的HRTEM; (i) 3#晶粒内TB的FFT

    Fig. 3.  (a) TEM bright field image of grain 1 along the [010] zone axis, the positions of six twin boundaries TB1—TB6 are shown by the arrow; (b) HRTEM of TB2 in grain 1; (c) FFT of TB2 in grain 1; (d) TEM bright field image of grain 2 along the [111] zone axis, the positions of two twin boundaries TB1 and TB2 are shown by the arrow; (e) HRTEM of TB2 in grain 2; (f) FFT of TB2 in grain 2; (g) TEM bright field image of grain 3 along the [111] zone axis, the positions of twin boundary TB is shown by the arrow; (h) HRTEM of TB in grain 3; (i) FFT of TB in grain 3.

    图 4  (a) 4#晶粒TEM明场像, 晶界GB1, GB2和孪晶界TB1, TB2如图中箭头所示; (b) 4#晶粒TB1和TB2 [111]方向HRTEM; (c) 4#晶粒TB1处FFT; (d) 4#晶粒内TB2处FFT; (e) 5#晶粒TEM明场像, 2条晶界GB1和GB2如图中白色箭头所示, (f) 5#晶粒GB1和GB2交界处[111]方向HRTEM; (g) 5#晶粒内[121]方向有序层错FFT; (h) 5#晶粒内[211]方向有序层错FFT

    Fig. 4.  (a) TEM bright field image of grain 4, the positions of two grain boundaries GB1&GB2 and two twin boundaries TB1&TB2 are shown by the arrow; (b) HRTEM of TB1&TB2 from grain 4 along the [111] zone axis; (c) FFT of TB1 in grain 4; (d) FFT of TB2 in grain 4; (e) TEM bright field image of grain 5, positions of two grain boundaries GB1&GB2 are shown by the arrow; (f) HRTEM of GB1&GB2 from grain 5 along the [111] zone axis; (g) FFT of [121] periodic stacking fault in grain 5; (h) FFT of [211] periodic stacking fault in grain 5.

    图 5  (a) 6#晶粒TEM明场像, 2条晶界位置如白色箭头所示; (b) 6#晶粒内[100]方向层错的HRTEM; (c) 7#晶粒TEM明场像, 2条晶界位置白色箭头所示; (d) 7#晶粒内[100]方向层错的HRTEM

    Fig. 5.  (a) TEM bright field image of grain 6, the positions of two grain boundaries GB1&GB2 are shown by the arrow; (b) HRTEM of stacking fault along the [100] zone axis in grain 6; (c) TEM bright field image of grain 7, the positions of two grain boundaries GB1&GB2 are shown by the arrow; (d) HRTEM of stacking fault along the [100] zone axis in grain 7.

    图 6  不同尺寸TiO2晶粒的离心率

    Fig. 6.  Eccentricity of TiO2 grains with different sizes.

  • [1]

    Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Chen H M, Lu G Q 2008 Nature 453 638Google Scholar

    [2]

    Etgar L, Zhang W, Gabriel S, Hickey S G, Nazeeruddin M K, Eychmuller A, Liu B, Gratzel M 2012 Adv. Mater. 24 2202Google Scholar

    [3]

    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269Google Scholar

    [4]

    Chen X, Mao S S 2007 Chem. Rev. 107 2891Google Scholar

    [5]

    Chen X B, Liu L, Huang F Q 2015 Chem. Rev. 44 1861Google Scholar

    [6]

    Dachille F, Dimons P Y, Roy R 1968 Am. Mineral. 53 1929

    [7]

    Ohsaka T, Yamaoka S, Shimomura O 1979 Solid State Commun. 30 345Google Scholar

    [8]

    Lagarec K, Desgreniers S 1995 Solid State Commun. 94 519Google Scholar

    [9]

    Arlt T, Bermejo M, Blanco M A, Gerward L, Jiang J, Olsen J S, Recio J M 2000 Phys. Rev. B 61 14414Google Scholar

    [10]

    Simons P Y, Dachille F 1967 Acta Crystallogr. 23 334Google Scholar

    [11]

    Jamieson J C, Olinger B 1968 Science 161 893Google Scholar

    [12]

    Hearne G R, Zhao J, Dawe A M, Pischedda V, Maaza, Nieuwoudt M K, Kibasomba P, Nemraoui O, Comins J D, Witcomb M J 2004 Phys. Rev. B 70 134102Google Scholar

    [13]

    Swamy V, Kuznetsov A, Dubrovinsky L S, Caruso R A, Shchukin D G, Muddle B C 2005 Phys. Rev. B 71 184302Google Scholar

    [14]

    Pischedda V, Hearne G R, Dawe A M, Lowther J E 2006 Phys. Rev. Lett. 96 035509Google Scholar

    [15]

    Swamy V, Kuznetsov A, Dubrovinsky L S, McMillan P F, Prakapenka V B, Shen G, Muddle B C 2006 Phys. Rev. Lett. 96 135702Google Scholar

    [16]

    Swamy V, Kuznetsov A Y, Dubrovinsky L S, Kurnosov A, Prakapenka V B 2009 Phys. Rev. Lett. 103 075505Google Scholar

    [17]

    Wang Y J, Zhao Y S, Zhang J Z, Xu H W, Wang L P, Luo S N, Daemen L L 2008 J. Phys. Condens. Mater. 20 125224Google Scholar

    [18]

    Sekiya T, Ohta S, Kamei S, Hanakawa M, Kurita S 2001 J. Phys. Chem. Solids 62 717Google Scholar

    [19]

    Li Q J, Cheng B Y, Yang X, Liu R, Liu B, Liu J, Chen Z Q, Zou B, Cui T, Liu B B 2013 J. Phys. Chem. C 117 8516Google Scholar

    [20]

    Huang Y W, Chen F J, Li X, Yuan Y, Dong H N, Samanta S, Yu Z H, Rahman S, Zhang J, Yang K, Yan S, Wang L 2016 J. Appl. Phys. 119 215903Google Scholar

    [21]

    Sun Q B, Huston L Q, Frankcombe T J, Bradby J E, Lu T, Yu D H, Zhou C, Fu Z X, Liu Y 2017 Cryst. Growth Des. 17 2529Google Scholar

    [22]

    Razavi-Khosroshahi H, Edalati K, Arita M, Horita Z, Fuji M 2016 Scripta Materialia 124 59Google Scholar

    [23]

    Razavi-Khosroshahi H, Edalati K, Hirayama M, Emami H, Arita M, Yamauchi M, Hagiwara H, Ida S, Ishihara T, Akiba E, Horita Z, Fuji M 2016 ACS Catal. 6 5103Google Scholar

    [24]

    Chao L, Zhang X, Duan G, Jian T, Liu Q 2014 J. Mater. Sci. Technol. 30 41Google Scholar

    [25]

    Meyers M A, Andrade U, Chokshi A H T 1995 Metal Mater Trans 26 2881Google Scholar

    [26]

    Song M, Zhou G, Lu N, Lee J, Nakouzi E, Wang H, Li D S 2020 Science 367 40Google Scholar

    [27]

    Liao X Z, Zhao Y H, Srinivasan S G, Zhu Y T, Valiev R Z, Gunderov D V 2004 Appl. Phys. Lett. 84 592Google Scholar

    [28]

    Zhu Y T, Liao X Z, Valiev R Z 2005 Appl. Phys. Lett. 86 103112Google Scholar

    [29]

    Tian Y, Xu B, Yu D, Ma Y, Wang Y, Jiang Y, Hu W, Tang C, Gao Y, Luo K, Zhao Z, Wang L M, Wen B, He J, Liu Z 2013 Nature 493 385Google Scholar

    [30]

    Huang Q, Yu D, Xu B, Hu W, Ma Y, Wang Y, Zhao Z, Wen B, He J, Liu Z, Tian Y 2014 Nature 510 250Google Scholar

    [31]

    Hall E O 1951 Proc. Phys. Soc. London B 64 747Google Scholar

    [32]

    Petch N J 1953 J. Iron Steel Ins. 174 25

    [33]

    Tse J S, Klug D D, Gao F M 2006 Phys. Rev. B 73 140102Google Scholar

    [34]

    Halperin W P 1986 Rev. Mod. Phys. 58 533Google Scholar

    [35]

    Gerberich W W, Mook W M, Perrey C R, Carter C B, Baskes M I, Mukherjee R, Gidwani A, Heberlein J, Mc- Murry P H, Girshick S L 2003 J. Mech. Phys. Solids. 51 979Google Scholar

    [36]

    Xu J, Teng F, Xu C Y, Yang Y, Yang L M, Kan Y D 2015 J. Phys. Chem. C 119 13011Google Scholar

  • [1] 陈贝, 邓永和, 祁青华, 高明, 文大东, 王小云, 彭平. 高压下快凝Pd82Si18非晶合金中二十面体结构分析. 物理学报, 2024, 73(2): 026101. doi: 10.7498/aps.73.20231101
    [2] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量. 物理学报, 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [3] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟. 物理学报, 2022, 71(24): 243101. doi: 10.7498/aps.71.20221368
    [4] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下TiO2纳米线晶粒和晶界性质及电输运行为. 物理学报, 2022, 71(9): 096101. doi: 10.7498/aps.71.20212276
    [5] 李恬静, 操秀霞, 唐士惠, 何林, 孟川民. 蓝宝石冲击消光晶向效应的第一性原理. 物理学报, 2020, 69(4): 046201. doi: 10.7498/aps.69.20190955
    [6] 时旭含, 李海燕, 姚震, 刘冰冰. Ca5N4高压新相的第一性原理研究. 物理学报, 2020, 69(6): 067101. doi: 10.7498/aps.69.20191808
    [7] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质. 物理学报, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [8] 王春杰, 王月, 高春晓. 高压下纳米晶ZnS晶粒和晶界性质及相变机理. 物理学报, 2020, 69(14): 147202. doi: 10.7498/aps.69.20200240
    [9] 王春杰, 王月, 高春晓. 高压下金红石相TiO2的晶界电学性质. 物理学报, 2019, 68(20): 206401. doi: 10.7498/aps.68.20190630
    [10] 谷卓, 班士良. 纤锌矿结构ZnO/MgxZn1-xO量子阱中带间光吸收的尺寸效应和三元混晶效应. 物理学报, 2014, 63(10): 107301. doi: 10.7498/aps.63.107301
    [11] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [12] 张品亮, 龚自正, 姬广富, 刘崧. α-Ti2Zr高压物性的第一性原理计算研究. 物理学报, 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
    [13] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [14] 吕晓静, 翁春生, 李宁. 高压环境下1.58 μm波段CO2吸收光谱特性分析. 物理学报, 2012, 61(23): 234205. doi: 10.7498/aps.61.234205
    [15] 邓杨, 王如志, 徐利春, 房慧, 严辉. 立方(Ba0.5Sr0.5)TiO3高压诱导带隙变化的第一性原理研究. 物理学报, 2011, 60(11): 117309. doi: 10.7498/aps.60.117309
    [16] 王磊, 杨华岳. 高压LDMOS晶体管准饱和效应分析与建模. 物理学报, 2010, 59(1): 571-578. doi: 10.7498/aps.59.571
    [17] 邵光杰, 秦秀娟, 刘日平, 王文魁, 姚玉书. 氧化锌纳米晶高压下的晶粒演化和性能. 物理学报, 2006, 55(1): 472-476. doi: 10.7498/aps.55.472
    [18] 艾树涛, 蔡元贞. 与相变潜热有关的铁电-顺电相界动力学及其尺寸效应. 物理学报, 2006, 55(7): 3721-3724. doi: 10.7498/aps.55.3721
    [19] 王海燕, 刘日平, 马明臻, 高 明, 姚玉书, 王文魁. FeSi2合金在高压下的凝固. 物理学报, 2004, 53(7): 2378-2383. doi: 10.7498/aps.53.2378
    [20] 王秀英, 孙力玲, 刘日平, 姚玉书, 张 君, 王文魁. 高压下Co在Zr46.75Ti8.25Cu7.5Ni10Be27.5大块金属玻璃过冷液相区中的扩散. 物理学报, 2004, 53(11): 3845-3848. doi: 10.7498/aps.53.3845
计量
  • 文章访问数:  5875
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-19
  • 修回日期:  2022-11-05
  • 上网日期:  2022-12-03
  • 刊出日期:  2023-02-05

/

返回文章
返回