搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型的低散射微带天线阵设计

兰俊祥 曹祥玉 高军 韩江枫 刘涛 丛丽丽 王思铭

引用本文:
Citation:

一种新型的低散射微带天线阵设计

兰俊祥, 曹祥玉, 高军, 韩江枫, 刘涛, 丛丽丽, 王思铭

Novel design of microstrip antenna array with low scattering performance

Lan Jun-Xiang, Cao Xiang-Yu, Gao Jun, Han Jiang-Feng, Liu Tao, Cong Li-Li, Wang Si-Ming
PDF
HTML
导出引用
  • 本文将电磁表面(electromagnetic surface, EMS)的设计思想引入到微带天线阵的设计中, 在设计天线单元的同时, 也将其作为EMS单元兼顾其反射特性. 通过在矩形辐射贴片上开弧形缺口, 得到一种新的单元结构, 该单元可与原始EMS单元之间形成180° ± 30°有效相位差, 且作为天线单元时与原始天线工作在相同谐振模式、相同频带. 将两种单元以棋盘形式构成组合天线阵, 在两个极化下分别基于相位对消原理和吸波原理实现了雷达散射截面(radar cross section, RCS)减缩. 实测与仿真结果表明: 相较于等大小的金属板, 在x极化波照射下, 天线阵在5.6—6.0 GHz实现了6 dB以上的RCS减缩, 相对带宽为10.1%; 在y极化波照射下, 天线阵在5.0—7.2 GHz实现了6 dB以上的RCS减缩, 相对带宽为24%. 同时由于两种单元在辐射上具有较好的一致性, 使得组合天线阵的辐射性能得以保持. 该方法有效解决了天线阵辐射和散射难以兼顾的矛盾, 为其他形式的低散射天线阵的设计提供了新的方法与思路.
    In this paper, the idea of electromagnetic surface (EMS) is introduced into the design of microstrip antenna array. The antenna element proposed in this paper is treated as an EMS element, whose reflection characteristics are taken into consideration in the process of antenna array design. Firstly, a rectangular patch antenna element is designed. Then, by cutting arc-shaped structure into a rectangular patch, another element is created to generate 180° ± 30° effective phase difference compared with original antenna element. As a consequence, 180° ± 30° effective phase difference is obtained from 5.5 GHz to 6.9 GHz for the y-polarized incidence. Meanwhile, for the x-polarized incidence, each of the two elements possesses high absorptivity over the operating frequency as a result of matching load. Besides, the two elements work in the same resonant mode and the same resonant frequency band when treated as radiators. In order to further explain the consistency in radiation and difference in reflection between the two structures, current distribution at 5.8 GHz is investigated in terms of radiation and reflection. Then, the two elements are arranged into a chessboard array to achieve the low scattering performance based on phase cancellation principle under the y-polarized incidence. Based on the absorption principle, the matching load is added to improve the scattering performance of the composite antenna array with the x-polarized incidence. Simultaneously, the proposed antenna array maintains good radiation characteristics due to the consistency between the radiation performances of the two elements. The corresponding antenna array is fabricated and tested. Simulated and measured results prove that the proposed antenna array also achieves good radiation performance. And a 6 dB radar cross section reduction is obtained from 5.6 to 6.2 GHz under the x polarization and from 5.5 to 7.0 GHz under the y polarization for the normal incident wave, implying 10.1% and 24% in relative bandwidth, respectively. In-band reflection suppression in the specular direction is demonstrated for an incident angle of 30° under both polarizations. The measured results are in good agreement with the simulated ones. Additionally, the approach proposed in this paper offers an effective way to deal with the confliction between radiation and scattering performance, and can also be applied to other kinds of antenna arrays.
      通信作者: 曹祥玉, xiangyucaokdy@163.com ; 高军, gjgj9694@163.com
    • 基金项目: 国家自然科学基金(批准号: 61471389, 61501494, 61671464, 61701523)和陕西省自然科学基金(批准号: 2017JM6025, 2018JM6040)资助的课题.
      Corresponding author: Cao Xiang-Yu, xiangyucaokdy@163.com ; Gao Jun, gjgj9694@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61471389, 61501494, 61671464, 61701523) and the Natural Science Foundationa of Shannxi Province, China (Grant Nos. 2017JM6025, 2018JM6040).
    [1]

    李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛 2015 物理学报 64 094102Google Scholar

    Li W Q, Cao X Y, Gao J, Zhao Y, Yang H H, Liu T 2015 Acta Phys. Sin. 64 094102Google Scholar

    [2]

    Jiang W, Zhang Y, Deng Z B, Hong T 2013 J. Electromagn. Waves 27 1077Google Scholar

    [3]

    姜文, 龚书喜, 洪涛, 王兴 2010 电子学报 38 2162

    Jiang W, Gong S X, Hong T, Wang X 2010 Acta Electronica Sinica 38 2162

    [4]

    Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163Google Scholar

    [5]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [6]

    Lan J X, Cao X Y, Gao J, Cong L L, Wang S M, Yang H H 2018 Radioengineering 27 746Google Scholar

    [7]

    Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511Google Scholar

    [8]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P 2007 IEEE Trans. Antennas Propag. 55 3630Google Scholar

    [9]

    Zheng Y J, Gao J, Xu L M, Cao X Y, Liu T 2017 IEEE Antennas Wirel. Propag. Lett. 16 1651Google Scholar

    [10]

    Wang H B, Cheng Y J 2016 IEEE Trans. Antennas Propag. 64 914Google Scholar

    [11]

    Xu G Y, Hum S V, Eleftheriades G V 2018 IEEE Trans. Antennas Propag. 66 780Google Scholar

    [12]

    Jia Y T, Liu Y, Zhang W B, Wang J, Wang Y Z, Gong S X, Liao G S 2018 Opt. Mater. 8 597Google Scholar

    [13]

    Zheng Q, Guo C J, Ding J 2018 IEEE Antennas Wirel. Propag. Lett. 17 1459Google Scholar

    [14]

    杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 物理学报 62 064103Google Scholar

    Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103Google Scholar

    [15]

    Zheng Y J, Cao X Y, Gao J, Yuan Z D, Yang H H 2015 IEEE Antennas Wirel. Propag. Lett. 14 1582Google Scholar

    [16]

    Liu Y, Li K, Jia Y T, Hao Y W, Gong S X, Guo Y J 2016 IEEE Trans. Antennas Propag. 64 326Google Scholar

    [17]

    Joozdani M Z, Amirhosseini M K, Abdolali A 2016 Electron. Lett. 52 767Google Scholar

    [18]

    Su J X, Kong C Y, Li Z R, Yin H C, Yang Y Q 2017 Electron. Lett. 53 520Google Scholar

    [19]

    Kang X L, Su J X, Zhang H, Yang Y Q 2017 Electron. Lett. 53 1088Google Scholar

    [20]

    Zhang C, Gao J, Cao X Y, Xu L M, Hang J F 2018 IEEE Antennas Wirel. Propag. Lett. 17 869Google Scholar

    [21]

    孙慧峰, 邓云凯, 雷宏, 焦军军, 石力 2012 中国科学院研究生院学报 29 282

    Sun H F, Deng Y K, Lei H, Jiao J J, Shi L 2012 J. Graduate Sch. Chin. Acad. Sci. 29 282

    [22]

    李响 2017 硕士学位论文 (南京: 南京信息工程大学)

    Li X 2017 M. S. Thesis (Nanjing: Nanjing University of Information Science & Technology) (in Chinese)

  • 图 1  单元三维结构示意图 (a) 单元1; (b) 单元2

    Fig. 1.  Geometry of (a) element 1 and (b) element 2.

    图 2  匹配负载对EMS1反射特性的影响 (a) 反射幅度; (b) 反射相位

    Fig. 2.  Reflection characteristics with and without matching load: (a) Reflection magnitude; (b) reflection phase.

    图 3  不同参数对EMS1反射特性的影响 (a) l1对反射幅度的影响; (b) l1对反射相位的影响; (c) s1对反射幅度的影响; (d) s1对反射相位的影响; (e) w1对反射幅度的影响; (f) w1对反射相位的影响

    Fig. 3.  Effects of various parameters on reflection performance: Effects of l1 on (a) reflection magnitude and (b) phase; effects of s1 on (c) reflection magnitude and (d) phase; effects of w1 on (e) reflection magnitude and (f) phase.

    图 4  弧形缺口对天线|S11|及y极化下反射相位的影响

    Fig. 4.  Influences of arc-shaped structure on reflection coefficient |S11| and reflection phase.

    图 5  天线单元辐射特性 (a) |S11|; (b) 方向图

    Fig. 5.  Radiation properties of two elements: (a) Reflection coefficients |S11|; (b) two-dimensional radiation patterns at 5.8 GHz.

    图 6  EMS反射特性 (a) 反射幅度; (b) 反射相位

    Fig. 6.  Reflection characteristics of two elements: (a) Reflection magnitude; (b) reflection phase.

    图 7  表面电场与电流分布 (a) E1在5.8 GHz的表面电场分布; (b) E2在5.8 GHz的表面电场分布; (c) EMS1在5.24 GHz的表面电流分布; (d) EMS2在6.86 GHz的表面电流分布

    Fig. 7.  Surface E-field distributions at 5.8 GHz of (a) E1 and (b) E2; surface current distributions (c) at 5.24 GHz of EMS1 and (d) at 6.86 GHz of EMS2.

    图 8  设计天线阵的模型示意图

    Fig. 8.  Schematic geometry of the proposed antenna array

    图 9  仿真天线阵辐射性能 (a) |S11|; (b) 增益; (c) 5.8 GHz处xoz面辐射方向图; (d) 5.8 GHz处yoz面辐射方向图

    Fig. 9.  Simulated radiation properties of proposed antenna array: (a) Reflection coefficients |S11|; (b) gain; two-dimensional radiation patterns at 5.8 GHz for (c) xoz plane; (d) yoz plane.

    图 10  电磁波垂直入射时天线阵单站RCS (a) x极化; (b) y极化

    Fig. 10.  Simulated scattering properties of antenna array under normal incidence: (a) x-polarization; (b) y-polarization.

    图 11  电磁波斜30°入射时天线阵镜像双站RCS (a) x极化; (b) y极化

    Fig. 11.  Simulated specular scattering properties of antenna array for incident angle of 30°: (a) x-polarized incidence; (b) y-polarized incidence.

    图 12  5.8 GHz处三维散射图 (a) x极化下金属板; (b) x极化下天线阵; (c) y极化下金属板; (d) y极化下天线阵

    Fig. 12.  Three-dimensional scattering patterns of total RCS at 5.8 GHz under x-polarized incidence for (a) metal board and (b) antenna array; under y-polarized incidence for (c) metal board and (d) antenna array.

    图 13  阵列天线实物及测试配置图 (a) 天线阵实物; (b) 功分器; (c) 散射测试环境

    Fig. 13.  Fabricated sample of antenna array and testing environment: (a) Sample; (b) one in two power divider RS2W2080-S and one in eight power dividers RS8W2080-S; (c) testing environment for scattering performance.

    图 14  实测天线阵的辐射特性 (a) |S11|; (b) 5.8 GHz处xoz面辐射方向图; (c) 5.8 GHz处yoz面辐射方向图

    Fig. 14.  Measured radiation properties of antenna array: (a) Measured reflection coefficients |S11|; two-dimensional radiation patterns at 5.8 GHz for (b) xoz plane; (c) yoz plane.

    图 15  RCS减缩量 (a) 入射波垂直入射; (b) 入射波斜30°入射

    Fig. 15.  RCS reduction in contract to metal board for incident angles of (a) 0° and (b) 30°.

    表 1  本文所设计的低散射微带天线阵与文献[1720]中的对比

    Table 1.  Comparison between this work and other antenna arrays in Ref. [17−20].

    阵列规模阵元间隔/$\lambda $天线阵尺寸大小天线阵相对带宽/%带内RCS减缩量RCS缩减相对带宽/%
    文献[17]2 × 20.691.38$\lambda $ × 1.38$\lambda $2.4无减缩122
    文献[18]2 × 20.642.40$\lambda $ × 2.40$\lambda $10.93 dB以上126
    文献[19]2 × 20.603.65$\lambda $ × 3.65$\lambda $11.05 dB以上93
    文献[20]2 × 20.901.80$\lambda $ × 1.80$\lambda $5.5无减缩69
    本文4 × 40.481.92$\lambda $ × 1.92$\lambda $6.96 dB以上59
    下载: 导出CSV
  • [1]

    李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛 2015 物理学报 64 094102Google Scholar

    Li W Q, Cao X Y, Gao J, Zhao Y, Yang H H, Liu T 2015 Acta Phys. Sin. 64 094102Google Scholar

    [2]

    Jiang W, Zhang Y, Deng Z B, Hong T 2013 J. Electromagn. Waves 27 1077Google Scholar

    [3]

    姜文, 龚书喜, 洪涛, 王兴 2010 电子学报 38 2162

    Jiang W, Gong S X, Hong T, Wang X 2010 Acta Electronica Sinica 38 2162

    [4]

    Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163Google Scholar

    [5]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [6]

    Lan J X, Cao X Y, Gao J, Cong L L, Wang S M, Yang H H 2018 Radioengineering 27 746Google Scholar

    [7]

    Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511Google Scholar

    [8]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P 2007 IEEE Trans. Antennas Propag. 55 3630Google Scholar

    [9]

    Zheng Y J, Gao J, Xu L M, Cao X Y, Liu T 2017 IEEE Antennas Wirel. Propag. Lett. 16 1651Google Scholar

    [10]

    Wang H B, Cheng Y J 2016 IEEE Trans. Antennas Propag. 64 914Google Scholar

    [11]

    Xu G Y, Hum S V, Eleftheriades G V 2018 IEEE Trans. Antennas Propag. 66 780Google Scholar

    [12]

    Jia Y T, Liu Y, Zhang W B, Wang J, Wang Y Z, Gong S X, Liao G S 2018 Opt. Mater. 8 597Google Scholar

    [13]

    Zheng Q, Guo C J, Ding J 2018 IEEE Antennas Wirel. Propag. Lett. 17 1459Google Scholar

    [14]

    杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 物理学报 62 064103Google Scholar

    Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103Google Scholar

    [15]

    Zheng Y J, Cao X Y, Gao J, Yuan Z D, Yang H H 2015 IEEE Antennas Wirel. Propag. Lett. 14 1582Google Scholar

    [16]

    Liu Y, Li K, Jia Y T, Hao Y W, Gong S X, Guo Y J 2016 IEEE Trans. Antennas Propag. 64 326Google Scholar

    [17]

    Joozdani M Z, Amirhosseini M K, Abdolali A 2016 Electron. Lett. 52 767Google Scholar

    [18]

    Su J X, Kong C Y, Li Z R, Yin H C, Yang Y Q 2017 Electron. Lett. 53 520Google Scholar

    [19]

    Kang X L, Su J X, Zhang H, Yang Y Q 2017 Electron. Lett. 53 1088Google Scholar

    [20]

    Zhang C, Gao J, Cao X Y, Xu L M, Hang J F 2018 IEEE Antennas Wirel. Propag. Lett. 17 869Google Scholar

    [21]

    孙慧峰, 邓云凯, 雷宏, 焦军军, 石力 2012 中国科学院研究生院学报 29 282

    Sun H F, Deng Y K, Lei H, Jiao J J, Shi L 2012 J. Graduate Sch. Chin. Acad. Sci. 29 282

    [22]

    李响 2017 硕士学位论文 (南京: 南京信息工程大学)

    Li X 2017 M. S. Thesis (Nanjing: Nanjing University of Information Science & Technology) (in Chinese)

  • [1] 李桐, 杨欢欢, 李奇, 廖嘉伟, 高坤, 季轲峰, 曹祥玉. 基于共享孔径技术的低RCS电磁超构表面天线设计. 物理学报, 2024, 73(12): 124101. doi: 10.7498/aps.73.20240142
    [2] 冯奎胜, 李娜, 杨欢欢. 电磁超构表面与天线结构一体化的低RCS阵列. 物理学报, 2021, 70(19): 194101. doi: 10.7498/aps.70.20210746
    [3] 郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐. 一种编码式低雷达散射截面超表面天线阵列设计. 物理学报, 2020, 69(24): 244101. doi: 10.7498/aps.69.20200978
    [4] 霍龙桦, 谢国锋. 表面低配位原子对声子的散射机制. 物理学报, 2019, 68(8): 086501. doi: 10.7498/aps.68.20190194
    [5] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [6] 张金玲, 万文钢, 郑占奇, 甘曦, 朱兴宇. X波段微带余割平方扩展波束天线阵赋形优化遗传算法研究. 物理学报, 2015, 64(11): 110504. doi: 10.7498/aps.64.110504
    [7] 李文强, 曹祥玉, 高军, 郑月军, 杨欢欢, 李思佳, 赵一. 共享孔径人工电磁媒质设计及其在高增益低雷达散射截面天线中的应用. 物理学报, 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [8] 李文惠, 张介秋, 屈绍波, 袁航盈, 沈杨, 王冬骏, 过勐超. 基于宽带吸波体的微带天线雷达散射截面缩减设计. 物理学报, 2015, 64(8): 084101. doi: 10.7498/aps.64.084101
    [9] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [10] 于涛, 尹成友, 刘汉. 基于特征基函数的球面共形微带天线阵列分析. 物理学报, 2014, 63(23): 230701. doi: 10.7498/aps.63.230701
    [11] 袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷. 一种性能稳定的新型频率选择表面及其微带天线应用. 物理学报, 2014, 63(1): 014102. doi: 10.7498/aps.63.014102
    [12] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线. 物理学报, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [13] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [14] 刁志辉, 黄文彬, 邓舒鹏, 刘永刚, 彭增辉, 姚丽双, 宣丽. 基于低散射和高增益全息液晶/聚合物光栅的分布反馈式激光器. 物理学报, 2013, 62(3): 034202. doi: 10.7498/aps.62.034202
    [15] 郭林燕, 杨河林, 李敏华, 高超嵩, 田原. 单方环结构左手材料微带天线. 物理学报, 2012, 61(1): 014102. doi: 10.7498/aps.61.014102
    [16] 保石, 罗春荣, 赵晓鹏. S波段超材料完全吸收基板微带天线. 物理学报, 2011, 60(1): 014101. doi: 10.7498/aps.60.014101
    [17] 张雪芹, 王均宏, 李铮. 微带阵列天线的时域散射特性. 物理学报, 2011, 60(5): 051301. doi: 10.7498/aps.60.051301
    [18] 杨 锐, 谢拥军, 王 鹏, 杨同敏. 含有左手介质双层基底的亚波长谐振腔微带天线研究. 物理学报, 2007, 56(8): 4504-4508. doi: 10.7498/aps.56.4504
    [19] 武明峰, 孟繁义, 吴 群, 吴 健. 基于左手介质后向波特性的微带天线小型化研究. 物理学报, 2006, 55(12): 6368-6373. doi: 10.7498/aps.55.6368
    [20] 任朗, 卢明儒. 线形天线阵辐射图形中旁瓣的减小. 物理学报, 1961, 17(12): 592-599. doi: 10.7498/aps.17.592
计量
  • 文章访问数:  8732
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-13
  • 修回日期:  2018-10-30
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回