搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InGaZnO薄膜晶体管泄漏电流模型

邓小庆 邓联文 何伊妮 廖聪维 黄生祥 罗衡

引用本文:
Citation:

InGaZnO薄膜晶体管泄漏电流模型

邓小庆, 邓联文, 何伊妮, 廖聪维, 黄生祥, 罗衡

Leakage current model of InGaZnO thin film transistor

Deng Xiao-Qing, Deng Lian-Wen, He Yi-Ni, Liao Cong-Wei, Huang Sheng-Xiang, Luo Heng
PDF
HTML
导出引用
  • 研究了非晶氧化锌镓铟薄膜晶体管(amorphous InGaZnO thin-film transistor, InGaZnO TFT)的泄漏电流模型. 基于Poole-Frenkel热发射效应和热离子场致发射效应的泄漏电流产生机制, 分别得到了高电场和低电场条件下的载流子产生-复合率. 在此基础上推导得到了InGaZnO TFT的分段式泄漏电流-电压数学模型, 并利用平滑函数得到了关断区和亚阈区连续统一的泄漏电流模型. 所提出的泄漏电流模型的计算值和TCAD模拟值与实验结果较为吻合. 利用所提出的InGaZnO TFT泄漏电流模型和TCAD模拟, 讨论了InGaZnO TFT不同的沟道宽度、沟道长度和栅介质层厚度对泄漏电流值的影响. 研究结果对InGaZnO TFT集成传感电路的设计具有一定参考价值.
    In recent years, amorphous InGaZnO thin-film transistor (InGaZnO TFT) has attracted intensive attention. Due to its high mobility, low off-state current, and excellent uniformity over large fabrication area, the InGaZnO TFTs promise to replace silicon-based TFTs in flat panel displays, optical image sensors, touch sensing and fingerprint sensing area. The on-state performances of InGaZnO TFT are used in thin film transistor liquid crystal display, active-matrix organic light emitting display, etc. Consequently, numerous on-current models have been proposed previously. However, for lots of the emerging sensing applications such as optical image sensors, the leakage current of InGaZnO TFTs is critical.Previous literature has shown that the leakage current generation mechanisms in TFTs include trap-assisted thermal emission, trap-assisted field emission, inter-band tunneling, and auxiliary thermal electron field emission containing Poole-Frenkel effect. However, up to now, there has been few reports on the leakage current model of InGaZnO TFT, which hinders further the development of emerging applications in InGaZnO TFTs for sensor and imagers integrated in display panels.In this paper, the leakage current model of InGaZnO TFT is established on the basis of carrier generation recombination rate. The feasibility of the proposed model is proved by comparing the TCAD simulations with the measured results. In addition, the influences of geometrical parameters on the leakage current of InGaZnO TFT, i.e. the channel width, the active layer thickness, and the gate dielectric thickness, are analyzed in detail. This research gives insightful results for designing the sensors and circuits by using the InGaZnO TFTs.
      通信作者: 廖聪维, 289114489@qq.com
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0204600)、国家自然科学基金(批准号: 61404002)和中南大学中央高校基本科研业务费(批准号: 2018zzts344)资助的课题.
      Corresponding author: Liao Cong-Wei, 289114489@qq.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0204600), the National Natural Science Foundation of China (Grant No. 61404002), and the Fundamental Research Funds for the Central Universities of Central South University, China (Grant No. 2018zzts344).
    [1]

    Kim Y, Kim Y, Lee H 2014 J. Disp. Technol. 10 80Google Scholar

    [2]

    Qian C, Sun J, Zhang L, Huang H, Yang J, Gao Y 2015 J. Phys. Chem. C 119 14965Google Scholar

    [3]

    Zhang C, Luo Q, Wu H, Li H, Lai J, Ji G, Yan L, Wang X, Zhang D, Lin J, Chen L, Yang J, Ma C 2017 Org. Electron. 45 190Google Scholar

    [4]

    Zheng Z, Jiang J, Guo J, Sun J, Yang J 2016 Org. Electron. 33 311Google Scholar

    [5]

    Liu F, Qian C, Sun J, Liu P, Huang Y, Gao Y, Yang J 2016 Appl. Phys. A: Mater. 122 311Google Scholar

    [6]

    Zhao C, Kanicki J 2014 Med. Phys. 41 091902Google Scholar

    [7]

    Seo W K, Pi J E, Cho S H, Kang S Y, Ahn S D, Hwang C S, Jeon H S, Kim J U, Lee M H 2018 Sensors 18 293Google Scholar

    [8]

    Geng D, Chen Y F, Mativenga M, Jang J 2017 IEEE Electr. Dev. Lett. 38 391

    [9]

    Kumomi H, Yaginuma S, Omura H, Goyal A, Sato A, Watanabe M, Shimada M, Kaji N, Takahashi K, Ofuji M, Watanabe T, Itagaki N, Shimizu H, Abe K, Tateishi Y, Yabuta H, Iwasaki T, Hayashi R, Aiba T, Sano M 2009 J. Disp. Technol. 5 531Google Scholar

    [10]

    覃婷, 黄生祥, 廖聪维, 于天宝, 邓联文 2017 物理学报 66 097101Google Scholar

    Qin T, Huang S X, Liao C W, Yu T B, Deng L W 2017 Acta Phys. Sin. 66 097101Google Scholar

    [11]

    覃婷, 黄生祥, 廖聪维, 于天宝, 罗衡, 刘胜, 邓联文 2018 物理学报 67 047302Google Scholar

    Qin T, Huang S X, Liao C W, Yu T B, Liu S, Luo H 2018 Acta Phys. Sin. 67 047302Google Scholar

    [12]

    Qin T, Liao C W, Huang S X, Yu T B, Deng L W 2018 Jpn. J. Appl. Phys. 57 014301Google Scholar

    [13]

    Mcdaid L J, Hall S, Eccleston W, Alderman J C 1989 IEEE European Solid State Device Research Conference, Berlin, Germany, September 11–14, 1989 p759

    [14]

    Faughnan B, Ipri A C 1989 IEEE Trans. Electron Dev. 36 101Google Scholar

    [15]

    Kim C H, Sohn K S, Jin J 1997 J. Appl. Phys. 81 8084Google Scholar

    [16]

    Dimitriadis C A, Farmakis F V, Brini J, Kamarinos G 2000 J. Appl. Phys. 88 2648Google Scholar

    [17]

    Seki S, Kogure O, Tsujiyama B 1987 IEEE Electr. Dev. Lett. 8 434Google Scholar

    [18]

    Lui O K B, Migliorato P 1997 Solid-State Electron. 41 575Google Scholar

    [19]

    Wu W J, Yao R H, Li S H, Hu Y F, Deng W L 2007 IEEE Trans. Electron Dev. 54 2975Google Scholar

    [20]

    Servati P, Nathan A 2002 IEEE Trans. Electron Dev. 49 812Google Scholar

    [21]

    Kamiya T, Nomura K, Hosono H 2010 Sci. Technol. Adv. Mat. 11 044305Google Scholar

    [22]

    Rottländer P, Hehn M, Schuhl A 2002 Phys. Rev. B 65 054422Google Scholar

    [23]

    Brotherton S D, Ayres J R, Young N D 1991 Solid-State Electron. 34 671Google Scholar

    [24]

    Kim C H, Sohn K S, Jin J 1997 J. Appl. Phys. 81 8084Google Scholar

    [25]

    Jacunski M D, Shur M S, Owusu A A, Ytterdal T, Hack M, Iniguez B 1999 IEEE Trans. Electron Dev. 46 1146Google Scholar

    [26]

    Hurkx G A M, Klaassen D B M, Knuvers M P G 1992 IEEE Trans. Electron Dev. 39 331Google Scholar

    [27]

    Bhattacharya S S, Banerjee S K, Nguyen B Y, Tobin P J 1994 IEEE Trans. Electron Dev. 41 221Google Scholar

    [28]

    Li C, Liao C W, Yu T B, Ke J Y, Huang S X, Deng L W 2018 Chin. Phys. Lett. 35 027032

    [29]

    Yoon J K, Jang Y H, Kim B K, Choi H S, Ahn B C, Lee C 1993 J. Non-Cryst. Solids 164 747

  • 图 1  InGaZnO TFT的结构剖面图

    Fig. 1.  Structural cross-section of InGaZnO TFT.

    图 2  IGZO TFT电学特性曲线实验与数值模拟比较 (a) IDS-VGS转移特性曲线; (b) IDS-VDS输出特性曲线

    Fig. 2.  The comparison of IGZO TFT electrical characteristic curve in experiment and numerical simulation: (a) IDS-VGS transfer characteristic curve; (b) IDS-VDS output characteristic curve.

    图 3  模型计算值与TCAD模拟值的对比(VDS = 2, 4, 6, 8, 10 V)

    Fig. 3.  Comparison between model calculation and numerical simulation results (VDS = 2, 4, 6, 8, 10 V).

    图 4  InGaZnO TFT在不同宽度(W = 200, 300, 400, 500 ${\text{μ}}{\rm{m}}$)下泄漏电流与栅源电压的关系

    Fig. 4.  Relationship between leakage current and gate-source voltage under different widths of InGaZnO TFT (W = 200, 300, 400, 500 ${\text{μ}}{\rm{m}}$).

    图 5  InGaZnO TFT在不同沟道长度 (L = 50, 60, 70, 80, 90 ${\text{μ}}{\rm{m}}$)下泄漏电流与栅源电压的关系

    Fig. 5.  Relationship between leakage current and gate-source voltage for different lengths of InGaZnO TFT (L = 50, 60, 70, 80, 90 ${\text{μ}}{\rm{m}}$).

    图 6  InGaZnO TFT在不同栅氧化层厚度(tSiOx = 150, 200, 250 nm)下泄漏电流与栅源电压的关系

    Fig. 6.  Relationship between leakage current and gate-source voltage of InGaZnO TFT with different gate oxide thickness (tSiOx = 150, 200, 250 nm).

    表 1  InGaZnO TFT器件结构的几何参数

    Table 1.  Geometric parameters of InGaZnO TFT device structure.

    参数数值
    栅介质层厚度/nm150
    a-InGaZnO半导体层厚度/nm40
    沟道宽度/${\text{μ}}{\rm{m}}$300
    沟道长度/${\text{μ}}{\rm{m}}$50
    下载: 导出CSV

    表 2  InGaZnO缺陷态密度模型参数

    Table 2.  Density of states model parameters for InGaZnO.

    参数描述数值单位
    nta导带尾类受主能态密度1.04 × 1019cm–3·eV–1
    ntd价带尾类施主能态密度5.0 × 1020cm–3·eV–1
    wta类受主态特征能量0.04eV
    wtd类施主态特征能量0.1eV
    nga高斯分布的受主态密度0cm–3·eV–1
    ngd高斯分布的施主态密度2.0 × 1016cm–3·eV–1
    egd高斯分布施主能态峰值能量2.9eV
    wgd高斯分布施主能态特征能量0.1eV
    下载: 导出CSV
  • [1]

    Kim Y, Kim Y, Lee H 2014 J. Disp. Technol. 10 80Google Scholar

    [2]

    Qian C, Sun J, Zhang L, Huang H, Yang J, Gao Y 2015 J. Phys. Chem. C 119 14965Google Scholar

    [3]

    Zhang C, Luo Q, Wu H, Li H, Lai J, Ji G, Yan L, Wang X, Zhang D, Lin J, Chen L, Yang J, Ma C 2017 Org. Electron. 45 190Google Scholar

    [4]

    Zheng Z, Jiang J, Guo J, Sun J, Yang J 2016 Org. Electron. 33 311Google Scholar

    [5]

    Liu F, Qian C, Sun J, Liu P, Huang Y, Gao Y, Yang J 2016 Appl. Phys. A: Mater. 122 311Google Scholar

    [6]

    Zhao C, Kanicki J 2014 Med. Phys. 41 091902Google Scholar

    [7]

    Seo W K, Pi J E, Cho S H, Kang S Y, Ahn S D, Hwang C S, Jeon H S, Kim J U, Lee M H 2018 Sensors 18 293Google Scholar

    [8]

    Geng D, Chen Y F, Mativenga M, Jang J 2017 IEEE Electr. Dev. Lett. 38 391

    [9]

    Kumomi H, Yaginuma S, Omura H, Goyal A, Sato A, Watanabe M, Shimada M, Kaji N, Takahashi K, Ofuji M, Watanabe T, Itagaki N, Shimizu H, Abe K, Tateishi Y, Yabuta H, Iwasaki T, Hayashi R, Aiba T, Sano M 2009 J. Disp. Technol. 5 531Google Scholar

    [10]

    覃婷, 黄生祥, 廖聪维, 于天宝, 邓联文 2017 物理学报 66 097101Google Scholar

    Qin T, Huang S X, Liao C W, Yu T B, Deng L W 2017 Acta Phys. Sin. 66 097101Google Scholar

    [11]

    覃婷, 黄生祥, 廖聪维, 于天宝, 罗衡, 刘胜, 邓联文 2018 物理学报 67 047302Google Scholar

    Qin T, Huang S X, Liao C W, Yu T B, Liu S, Luo H 2018 Acta Phys. Sin. 67 047302Google Scholar

    [12]

    Qin T, Liao C W, Huang S X, Yu T B, Deng L W 2018 Jpn. J. Appl. Phys. 57 014301Google Scholar

    [13]

    Mcdaid L J, Hall S, Eccleston W, Alderman J C 1989 IEEE European Solid State Device Research Conference, Berlin, Germany, September 11–14, 1989 p759

    [14]

    Faughnan B, Ipri A C 1989 IEEE Trans. Electron Dev. 36 101Google Scholar

    [15]

    Kim C H, Sohn K S, Jin J 1997 J. Appl. Phys. 81 8084Google Scholar

    [16]

    Dimitriadis C A, Farmakis F V, Brini J, Kamarinos G 2000 J. Appl. Phys. 88 2648Google Scholar

    [17]

    Seki S, Kogure O, Tsujiyama B 1987 IEEE Electr. Dev. Lett. 8 434Google Scholar

    [18]

    Lui O K B, Migliorato P 1997 Solid-State Electron. 41 575Google Scholar

    [19]

    Wu W J, Yao R H, Li S H, Hu Y F, Deng W L 2007 IEEE Trans. Electron Dev. 54 2975Google Scholar

    [20]

    Servati P, Nathan A 2002 IEEE Trans. Electron Dev. 49 812Google Scholar

    [21]

    Kamiya T, Nomura K, Hosono H 2010 Sci. Technol. Adv. Mat. 11 044305Google Scholar

    [22]

    Rottländer P, Hehn M, Schuhl A 2002 Phys. Rev. B 65 054422Google Scholar

    [23]

    Brotherton S D, Ayres J R, Young N D 1991 Solid-State Electron. 34 671Google Scholar

    [24]

    Kim C H, Sohn K S, Jin J 1997 J. Appl. Phys. 81 8084Google Scholar

    [25]

    Jacunski M D, Shur M S, Owusu A A, Ytterdal T, Hack M, Iniguez B 1999 IEEE Trans. Electron Dev. 46 1146Google Scholar

    [26]

    Hurkx G A M, Klaassen D B M, Knuvers M P G 1992 IEEE Trans. Electron Dev. 39 331Google Scholar

    [27]

    Bhattacharya S S, Banerjee S K, Nguyen B Y, Tobin P J 1994 IEEE Trans. Electron Dev. 41 221Google Scholar

    [28]

    Li C, Liao C W, Yu T B, Ke J Y, Huang S X, Deng L W 2018 Chin. Phys. Lett. 35 027032

    [29]

    Yoon J K, Jang Y H, Kim B K, Choi H S, Ahn B C, Lee C 1993 J. Non-Cryst. Solids 164 747

  • [1] 彭超, 雷志锋, 张战刚, 何玉娟, 马腾, 蔡宗棋, 陈义强. 中子辐射导致的SiC功率器件漏电增加特性研究. 物理学报, 2023, 72(18): 186102. doi: 10.7498/aps.72.20230976
    [2] 刘冬季, 马圆圆, 何金柏, 王昊, 周远翔, 孙冠岳, 赵洪峰. 采用Ga掺杂的具有低泄漏电流和高稳定性避雷器ZnO压敏电阻. 物理学报, 2023, 72(6): 067301. doi: 10.7498/aps.72.20222233
    [3] 马群刚, 王海宏, 张盛东, 陈旭, 王婷婷. InGaZnO薄膜晶体管背板的层间Cu互连静电保护研究. 物理学报, 2019, 68(15): 158501. doi: 10.7498/aps.68.20190646
    [4] 马群刚, 周刘飞, 喻玥, 马国永, 张盛东. InGaZnO薄膜晶体管背板的栅极驱动电路静电释放失效研究. 物理学报, 2019, 68(10): 108501. doi: 10.7498/aps.68.20190265
    [5] 王翔, 陈雷雷, 曹艳荣, 羊群思, 朱培敏, 杨国锋, 王福学, 闫大为, 顾晓峰. Ni/Au/n-GaN肖特基二极管可导位错的电学模型. 物理学报, 2018, 67(17): 177202. doi: 10.7498/aps.67.20180762
    [6] 覃婷, 黄生祥, 廖聪维, 于天宝, 罗衡, 刘胜, 邓联文. 铟镓锌氧薄膜晶体管的悬浮栅效应研究. 物理学报, 2018, 67(4): 047302. doi: 10.7498/aps.67.20172325
    [7] 覃婷, 黄生祥, 廖聪维, 于天宝, 邓联文. 同步对称双栅InGaZnO薄膜晶体管电势模型研究. 物理学报, 2017, 66(9): 097101. doi: 10.7498/aps.66.097101
    [8] 唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康. 硅单粒子位移损伤多尺度模拟研究. 物理学报, 2016, 65(8): 084209. doi: 10.7498/aps.65.084209
    [9] 张世玉, 喻志农, 程锦, 吴德龙, 栗旭阳, 薛唯. 退火温度和Ga含量对溶液法制备InGaZnO薄膜晶体管性能的影响. 物理学报, 2016, 65(12): 128502. doi: 10.7498/aps.65.128502
    [10] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇, 殷树娟, 周春宇. 单轴应变SiNMOSFET源漏电流特性模型. 物理学报, 2015, 64(19): 197301. doi: 10.7498/aps.64.197301
    [11] 徐华, 兰林锋, 李民, 罗东向, 肖鹏, 林振国, 宁洪龙, 彭俊彪. 源漏电极的制备对氧化物薄膜晶体管性能的影响. 物理学报, 2014, 63(3): 038501. doi: 10.7498/aps.63.038501
    [12] 李维勤, 刘丁, 张海波. 高能电子照射绝缘样品的泄漏电流特性. 物理学报, 2014, 63(22): 227303. doi: 10.7498/aps.63.227303
    [13] 文娟辉, 杨琼, 曹觉先, 周益春. 铁电薄膜漏电流的应变调控. 物理学报, 2013, 62(6): 067701. doi: 10.7498/aps.62.067701
    [14] 张耕铭, 郭立强, 赵孔胜, 颜钟惠. 氧对IZO低压无结薄膜晶体管稳定性的影响. 物理学报, 2013, 62(13): 137201. doi: 10.7498/aps.62.137201
    [15] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 李妤晨. 应变Si NMOSFET漏电流解析模型. 物理学报, 2013, 62(23): 237103. doi: 10.7498/aps.62.237103
    [16] 陈海峰, 过立新. 超薄栅超短沟LDD nMOSFET中栅电压对栅致漏极泄漏电流影响研究. 物理学报, 2012, 61(2): 028501. doi: 10.7498/aps.61.028501
    [17] 卓青青, 刘红侠, 杨兆年, 蔡惠民, 郝跃. 偏置条件对SOI NMOS器件总剂量辐照效应的影响. 物理学报, 2012, 61(22): 220702. doi: 10.7498/aps.61.220702
    [18] 唐冬和, 杜磊, 王婷岚, 陈华, 贾晓菲. 纳米器件电流噪声的散射理论统一模型研究. 物理学报, 2011, 60(9): 097202. doi: 10.7498/aps.60.097202
    [19] 王思浩, 鲁庆, 王文华, 安霞, 黄如. 超陡倒掺杂分布对超深亚微米金属-氧化物-半导体器件总剂量辐照特性的改善. 物理学报, 2010, 59(3): 1970-1976. doi: 10.7498/aps.59.1970
    [20] 郝 跃, 韩新伟, 张进城, 张金凤. AlGaN/GaN HEMT器件直流扫描电流崩塌机理及其物理模型. 物理学报, 2006, 55(7): 3622-3628. doi: 10.7498/aps.55.3622
计量
  • 文章访问数:  11307
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-25
  • 修回日期:  2019-01-24
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-05

/

返回文章
返回