Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic transport in hybrid contact of doubly-stacked zigzag graphene nanoribbons

Hu Fei Duan Ling Ding Jian-Wen

Citation:

Electronic transport in hybrid contact of doubly-stacked zigzag graphene nanoribbons

Hu Fei, Duan Ling, Ding Jian-Wen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • According to a tight-binding model and the Green's function formalism, we investigate the electronic transport in hybrid contact of doubly stacked zigzag graphene nanoribbons. Our study shows that the next nearest neighbor interlayer coupling, the hybrid contact length and gate voltage each have a significant modulation effect on the electron transmission spectrum. Due to the next nearest neighbor interlayer coupling, the transmission spectrum of the hybrid contact exhibits an electron-hole asymmetry, which is consistent with the experimental result. There exist some transmission gap (T=0) and quantum step (T=1) within the first subband below the Fermi energy, meaning that electrons can reflect and/or transmit completely. It is also observed that the transmission coefficient oscillates within 1 as the contact length increases, showing a quantum interference effect. Under a gate voltage in the bilayer regime, the transmission coefficient can be changed from 1 to 0, showing that a switching effect exists here. The results is useful for the design and the application of the graphene-based device.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10674113 and 11074212), and the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200726).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]
    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [4]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nano 3 206

    [5]
    [6]

    Moser J, Barreiro A, Bachtold A 2007 Appl. Phys. Lett. 91 163513

    [7]
    [8]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [9]
    [10]
    [11]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J-H, Kim P, Choi J-Y, Hong B H 2009 Nature 457 706

    [12]
    [13]

    Murali R, Brenner K, Yang Y, Beck T, Meindl J 2009 IEEE Electron Dev. Lett. 30 611

    [14]

    Oostinga J B, Heersche H B, Liu X, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151

    [15]
    [16]

    Schwierz F 2010 Nat. Nano 5 487

    [17]
    [18]

    Lin Y M, Avouris P 2008 Nano Lett. 8 2119

    [19]
    [20]
    [21]

    Xu H, Heinzel T, Zozoulenko I V 2009 Phys. Rev. B 80 045308

    [22]
    [23]

    Areshkin D A, White C T 2007 Nano Lett. 7 3253

    [24]
    [25]

    Rotenberg E, Bostwick A, Ohta T, McChesney J L, Seyller T, Horn K 2008 Nat. Mater. 7 258

    [26]
    [27]

    Puls C P, Staley N E, Liu Y 2009 Phys. Rev. B 79 235415

    [28]

    Nilsson J, Castro Neto A H, Guinea F, Peres N M R 2007 Phys. Rev. B 76 165416

    [29]
    [30]

    Nakanishi T, Koshino M, Ando T 2010 Phys. Rev. B 82 125428

    [31]
    [32]
    [33]

    Koshino M, Nakanishi T, Ando T 2010 Phys. Rev. B 82 205436

    [34]

    Gonzlez J W, Santos H, Pacheco M, Chico L, Brey L 2010 Phys. Rev. B 81 195406

    [35]
    [36]

    Mucha-Kruczyński M, McCann E, Falko V I 2010 Semicond. Sci. Technol. 25 033001

    [37]
    [38]

    Castro E, Novoselov K, Morozov S, Peres N, Santos J, Nilsson J, Guinea F, Geim A, Neto A 2010 J. Phys. Condens. Matter 22 175503

    [39]
    [40]
    [41]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L, Basov D N 2009 Phys. Rev. Lett. 102 037403

    [42]
    [43]

    Wright A, Liu F, Zhang C 2009 Nanotechnology 20 405203

    [44]

    Cortijo A, Oroszlny L, Schomerus H 2010 Phys. Rev. B 81 235422

    [45]
    [46]
    [47]

    Rhim J-W, Moon K 2008 J. Phys. Condens. Matter 20 365202

    [48]
    [49]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 物理学报 60 047102]

    [50]
    [51]

    Kuzmenko A B, Crassee I, van der Marel D, Blake P, Novoselov K S 2009 Phys. Rev. B 80 165406

    [52]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [53]
    [54]
    [55]

    Xu H, Heinzel T, Evaldsson M, Zozoulenko I V 2008 Phys. Rev. B 77 245401

    [56]

    Xu N, Ding J W, Xing D Y 2008 J. Appl. Phys. 103 083710

    [57]
    [58]

    Bttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [59]
    [60]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞, 童国平, 蒋永进 2009 物理学报 58 8537]

    [61]
    [62]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2009 物理学报 58 7156]

    [63]
    [64]

    Kuzmenko A B, van Heumen E, van der Marel D, Lerch P, Blake P, Novoselov K S, Geim A K 2009 Phys. Rev. B 79 115441

    [65]
    [66]
    [67]

    Buia C, Buldum A, Lu J P 2003 Phys. Rev. B 67 113409

    [68]
    [69]

    Liu Q, Luo G, Qin R, Li H, Yan X, Xu C, Lai L, Zhou J, Hou S, Wang E 2011 Phys. Rev. B 83 155442

    [70]
    [71]

    Liu Q, Yu L, Li H, Qin R, Jing Z, Zheng J, Gao Z, Lu J 2011 J. Phys. Chem. C 115 6933

    [72]
    [73]

    Liao L, Bai J, Cheng R, Lin Y C, Jiang S, Qu Y, Huang Y, Duan X 2010 Nano Lett. 10 3952

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]
    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [4]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nano 3 206

    [5]
    [6]

    Moser J, Barreiro A, Bachtold A 2007 Appl. Phys. Lett. 91 163513

    [7]
    [8]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [9]
    [10]
    [11]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J-H, Kim P, Choi J-Y, Hong B H 2009 Nature 457 706

    [12]
    [13]

    Murali R, Brenner K, Yang Y, Beck T, Meindl J 2009 IEEE Electron Dev. Lett. 30 611

    [14]

    Oostinga J B, Heersche H B, Liu X, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151

    [15]
    [16]

    Schwierz F 2010 Nat. Nano 5 487

    [17]
    [18]

    Lin Y M, Avouris P 2008 Nano Lett. 8 2119

    [19]
    [20]
    [21]

    Xu H, Heinzel T, Zozoulenko I V 2009 Phys. Rev. B 80 045308

    [22]
    [23]

    Areshkin D A, White C T 2007 Nano Lett. 7 3253

    [24]
    [25]

    Rotenberg E, Bostwick A, Ohta T, McChesney J L, Seyller T, Horn K 2008 Nat. Mater. 7 258

    [26]
    [27]

    Puls C P, Staley N E, Liu Y 2009 Phys. Rev. B 79 235415

    [28]

    Nilsson J, Castro Neto A H, Guinea F, Peres N M R 2007 Phys. Rev. B 76 165416

    [29]
    [30]

    Nakanishi T, Koshino M, Ando T 2010 Phys. Rev. B 82 125428

    [31]
    [32]
    [33]

    Koshino M, Nakanishi T, Ando T 2010 Phys. Rev. B 82 205436

    [34]

    Gonzlez J W, Santos H, Pacheco M, Chico L, Brey L 2010 Phys. Rev. B 81 195406

    [35]
    [36]

    Mucha-Kruczyński M, McCann E, Falko V I 2010 Semicond. Sci. Technol. 25 033001

    [37]
    [38]

    Castro E, Novoselov K, Morozov S, Peres N, Santos J, Nilsson J, Guinea F, Geim A, Neto A 2010 J. Phys. Condens. Matter 22 175503

    [39]
    [40]
    [41]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L, Basov D N 2009 Phys. Rev. Lett. 102 037403

    [42]
    [43]

    Wright A, Liu F, Zhang C 2009 Nanotechnology 20 405203

    [44]

    Cortijo A, Oroszlny L, Schomerus H 2010 Phys. Rev. B 81 235422

    [45]
    [46]
    [47]

    Rhim J-W, Moon K 2008 J. Phys. Condens. Matter 20 365202

    [48]
    [49]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 物理学报 60 047102]

    [50]
    [51]

    Kuzmenko A B, Crassee I, van der Marel D, Blake P, Novoselov K S 2009 Phys. Rev. B 80 165406

    [52]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [53]
    [54]
    [55]

    Xu H, Heinzel T, Evaldsson M, Zozoulenko I V 2008 Phys. Rev. B 77 245401

    [56]

    Xu N, Ding J W, Xing D Y 2008 J. Appl. Phys. 103 083710

    [57]
    [58]

    Bttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [59]
    [60]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞, 童国平, 蒋永进 2009 物理学报 58 8537]

    [61]
    [62]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2009 物理学报 58 7156]

    [63]
    [64]

    Kuzmenko A B, van Heumen E, van der Marel D, Lerch P, Blake P, Novoselov K S, Geim A K 2009 Phys. Rev. B 79 115441

    [65]
    [66]
    [67]

    Buia C, Buldum A, Lu J P 2003 Phys. Rev. B 67 113409

    [68]
    [69]

    Liu Q, Luo G, Qin R, Li H, Yan X, Xu C, Lai L, Zhou J, Hou S, Wang E 2011 Phys. Rev. B 83 155442

    [70]
    [71]

    Liu Q, Yu L, Li H, Qin R, Jing Z, Zheng J, Gao Z, Lu J 2011 J. Phys. Chem. C 115 6933

    [72]
    [73]

    Liao L, Bai J, Cheng R, Lin Y C, Jiang S, Qu Y, Huang Y, Duan X 2010 Nano Lett. 10 3952

  • [1] Zhou Zhan-Hui, Li Qun, He Xiao-Min. Electron transport mechanism in AlN/β-Ga2O3 heterostructures. Acta Physica Sinica, 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [2] He Yan-Bin, Bai Xi. Electron transport of one-dimensional non-conjugated (CH2)n molecule chain coupling to graphene electrode. Acta Physica Sinica, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [3] Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon. Acta Physica Sinica, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [4] Liu Fu-Ti, Zhang Shu-Hua, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong. Theoretical calculation of electron transport properties of atomic chains of (GaAs)n (n=1-4). Acta Physica Sinica, 2016, 65(10): 106201. doi: 10.7498/aps.65.106201
    [5] Liu Fu-Ti, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong. Calculation of electron transport in GaAs nanoscale junctions using first-principles. Acta Physica Sinica, 2014, 63(13): 137303. doi: 10.7498/aps.63.137303
    [6] Liu Fu-Ti, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong, Zeng Zhi-Qiang. Theoretical calculation of electron transport properties of the Au-Si60-Au molecular junctions. Acta Physica Sinica, 2014, 63(17): 177304. doi: 10.7498/aps.63.177304
    [7] Li Biao, Xu Da-Hai, Zeng Hui. Influence of edge reconstruction on the electron transport in zigzag graphene nanoribbon. Acta Physica Sinica, 2014, 63(11): 117102. doi: 10.7498/aps.63.117102
    [8] Liu Fu-Ti, Cheng Yan, Yang Fu-Bin, Cheng Xiao-Hong, Chen Xiang-Rong. First-principles calculations of the electron transport through Si4 cluster. Acta Physica Sinica, 2013, 62(14): 140504. doi: 10.7498/aps.62.140504
    [9] Liu Fu-Ti, Cheng Yan, Yang Fu-Bin, Cheng Xiao-Hong, Chen Xiang-Rong. First-principles calculations of the electronic transport in Au-Si-Au junctions. Acta Physica Sinica, 2013, 62(10): 107401. doi: 10.7498/aps.62.107401
    [10] Deng Xiao-Qing, Yang Chang-Hu, Zhang Hua-Lin. The electronic transport properties affected by B/N doping in graphene-based molecular devices. Acta Physica Sinica, 2013, 62(18): 186102. doi: 10.7498/aps.62.186102
    [11] Duan Ling, Hu Fei, Ding Jian-Wen. Effects of gradient disorder on electronic transport in quasi-one-dimensional nanowires. Acta Physica Sinica, 2011, 60(11): 117201. doi: 10.7498/aps.60.117201
    [12] Zheng Ji-Ming, Zhao Pei, Chen You-Wei, Ren Zhao-Yu, Guo Ping. Theoretical investigation on electron transport properties of singlewall carbon nanotube with oxygen molecular absorption. Acta Physica Sinica, 2011, 60(6): 068501. doi: 10.7498/aps.60.068501
    [13] Zhang Mi, Chen Yuan-Ping, Zhang Zai-Lan, Ouyang Tao, Zhong Jian-Xin. The effect of stacked graphene flakes on the electronic transport of zigzag-edged graphene nanoribbons. Acta Physica Sinica, 2011, 60(12): 127204. doi: 10.7498/aps.60.127204
    [14] Wang Li-Guang, Zhang Hong-Yu, Wang Chang, Terence K. S. W.. Electronic conductance of zigzag single wall carbon nanotube with an implanted Li atom. Acta Physica Sinica, 2010, 59(1): 536-540. doi: 10.7498/aps.59.536
    [15] Zheng Xin-Liang, Zheng Ji-Ming, Ren Zhao-Yu, Guo Ping, Tian Jin-Shou, Bai Jin-Tao. First-principles investigations on the electron transport of a TaSi3 cluster. Acta Physica Sinica, 2009, 58(8): 5709-5715. doi: 10.7498/aps.58.5709
    [16] Ouyang Fang-Ping, Wang Xiao-Jun, Zhang Hua, Xiao Jin, Chen Ling-Na, Xu Hui. The divacancy-defect effect of armchair graphene nanoribbons. Acta Physica Sinica, 2009, 58(8): 5640-5644. doi: 10.7498/aps.58.5640
    [17] Ouyang Fang-Ping, Xu Hui, Lin Feng. The electronic structure and transport properties ofgraphene nanoribbons with divacancies defects. Acta Physica Sinica, 2009, 58(6): 4132-4136. doi: 10.7498/aps.58.4132
    [18] Niu Xiu-Ming, Qi Yuan-Hua. Theoretical study of the electron transport in the molecular contact. Acta Physica Sinica, 2008, 57(11): 6926-6931. doi: 10.7498/aps.57.6926
    [19] Ouyang Fang-Ping, Xu Hui, Wei Chen. First-principles study of electronic structure and transport properties of zigzag graphene nanoribbons. Acta Physica Sinica, 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [20] Ouyang Fang-Ping, Wang Huan-You, Li Ming-Jun, Xiao Jin, Xu Hui. Study on electronic structure and transport properties of graphene nanoribbons with single vacancy defects. Acta Physica Sinica, 2008, 57(11): 7132-7138. doi: 10.7498/aps.57.7132
Metrics
  • Abstract views:  7159
  • PDF Downloads:  713
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2011
  • Accepted Date:  05 April 2012
  • Published Online:  05 April 2012

/

返回文章
返回