原子分子和材料物性数据

2025, 74 (12): 120702.
doi: 10.7498/aps.74.20250127
Abstract +

2025, 74 (12): 123101.
doi: 10.7498/aps.74.20250380
Abstract +
Carbon monoxide cation (CO+) plays a dominant role in some astrophysical atmosphere environments, and theoretical research on its opacity is crucial for modeling radiative transport. In this work, based on experimentally observed vibrational energy levels of the X2Σ+, A2Π, and B2Σ+ electronic states of CO+, the potential energy curves are improved and constructed using a modified Morse (MMorse) potential function, then the vibrational energy levels and spectroscopic constants are extracted. In the meantime, the internally contracted multireference configuration interaction (MRCI) method with Davison size-extensivity correction (+Q) is used to calculate the potential energy curves and transition dipole moments. The refined MMorse potential shows excellent agreement with the computed potential energy curves, while the spectroscopic constants and vibrational levels indicate strong consistency with existing theoretical and experimental data. The opacities of the CO+ molecule is computed at different temperatures under the pressure of 100 atm. The result shows that as temperature rises, the opacities of transitions in the long-wavelength range increases because of the larger population on excited electronic states at higher temperatures. All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00136 .

2025, 74 (12): 123102.
doi: 10.7498/aps.74.20250510
Abstract +
The electronic structure of the ICl+ molecular ion is investigated by using high-level multireference configuration interaction (MRCI) method. To improve computational accuracy, Davidson corrections, spin-orbit coupling (SOC), and core-valence electron correlations effects are incorporated into the calculations. The potential energy curves (PECs) of 21 Λ-S states associated with the two lowest dissociation limits I+(1Dg)+Cl(2Pu) and I+(3Pg)+Cl(2Pu) are obtained. The dipole moments (DMs) of the 21 Λ-S states of ICl+ are systematically studied, and the variations of DMs of the identical symmetry state (22Σ+/32Σ+ and 22Π/32Π) in the avoided crossing regions are elucidated by analyzing the dominant electronic configuration. When considering the SOC effect, the Λ-S states with the same Ω components may form new avoided crossing point, making the PECs more complex. With the help of calculated SOC matrix element, the interaction between crossing states can be elucidated. Spin-orbit coupling matrix elements involving the 22Π, 32Π, 12Δ and 22Δ states are calculated. By analyzing potential energy curves of these states and the nearby electronic states, the possible predissociation channels for 22Π, 32Π, 12Δ and 22Δ states are provided. Based on the computed PECs, the spectroscopic constants of bound Λ-S and Ω states are determined. The comparison of the spectroscopic constants between Λ-S and Ω states indicates that the SOC effect has an obvious correction to the spectroscopic properties of low-lying states. Finally, the transition properties between excited states and the ground state are studied. Based on the computed transition dipole moments and Franck-Condon factors, radiative lifetimes for the low-lying vibrational levels of excited states are evaluated. All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j 00213.00140 .

2025, 74 (12): 125202.
doi: 10.7498/aps.74.20250301
Abstract +

2025, 74 (12): 127102.
doi: 10.7498/aps.74.20250352
Abstract +
Metallic materials are widely used in the industrial field due to their excellent electrical transport properties and superior thermal dissipation performance. However, experimental measurements of electrical and thermal conductivity under high-temperature and high-pressure conditions are challenging and costly. This makes numerical simulation an efficient alternative solution. In this study, we develop a computational software named TREX (TRansport at EXtremes). It is based on the Kubo-Greenwood (KG) formula combined with first-principles molecular dynamics. This software is used to calculate electrical conductivity and electronic thermal conductivity. Using magnesium and magnesium-aluminum alloy AZ31B as research subjects, we systematically investigate their electrical and thermal transport properties. The temperature and pressure are in a range of 300−1200 K and 0−50 GPa, respectively. The method involves using first-principles molecular dynamics simulations to obtain equilibrium configurations of high-temperature disordered structures. Electrical conductivity and electronic thermal conductivity are calculated using the KG formula. Lattice thermal conductivity is determined by the Slack equation. To validate the reliability of our approach, we perform comparative calculations by using the Boltzmann transport equation. The research results are cross-verified with experimental data from Sichuan University and the Aerospace Materials Test and Analysis Center. The findings demonstrate that the maximum relative error between computational and experimental results is within 20%. This confirms the accuracy of our method. Additionally, we elucidate the variation patterns of electrical and thermal conductivity in magnesium and AZ31B alloy with temperature and pressure. These patterns include the reduction in electrical conductivity due to aluminum doping, the significant enhancement of conductivity under high pressure, and the unique temperature-induced thermal conductivity enhancement in AZ31B alloy. The TREX program developed in this study and the established performance dataset provide essential tools and data support. They are useful for research on electrical and thermal transport mechanisms in metallic materials under extreme conditions, and also for engineering applications. All the data presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00128.