-
Carbon monoxide cation (CO+) plays a dominant role in some astrophysical atmosphere environments, where theoretical studies of its opacity are essential for radiative transport modeling. In this work, based on experimentally observed vibrational energy levels of the X²Σ⁺, A²Π, and B²Σ⁺ electronic states of CO⁺, we refined and constructed potential energy curves using a Modified Morse (MMorse) potential function, then the vibrational energy levels and spectroscopic constants are extracted. In the meantime, the internally contracted multireference configuration interaction approach (MRCI) with Davison size-extensivity correction (+Q) is employed to calculate the potential energy curves and transition dipole moments. The refined MMorse potential exhibits excellent agreement with the computed potential energy curves, while the spectroscopic constants and vibrational levels show strong consistency with existing theoretical and experimental data. The opacities of the CO+ molecule is computed at different temperatures under the pressure of 100 atm. It is found that with the increase of temperature, the opacities for transitions at long wavelength range are enlarged because of the larger population on excited electronic states at the higher temperature.
-
Keywords:
- Carbon monoxide cation /
- spectroscopic constants /
- opacities
-
[1] Liang G-Y, Peng Y-G, Li R, Wu Y, Wang J-G 2020 Chin. Phys. B 29 23101
[2] Li R, Sang J, Lin X, Li J, Liang G, Wu Y 2022 Chinese Phys. B 31 103101
[3] Liang G-Y, Peng Y-G, Li R, Wu Y, Wang J-G 2020 Chin, Phys, Lett, 37 123101
[4] Chen C, Zhao G P, Qi Y Y, Wu Y, Wang J G 2022 Acta Phys. Sin. 71 143102 (in Chinese) [陈晨,赵国鹏,祁月盈,吴勇,王建国 2022 物理学报 71 143102]
[5] Xiao L, An S, Liu D, Minaev B F, Ågren H, Yan B 2025 Spectrochim. Acta, Part A 330 125704
[6] Herzberg G 1950 Molecular spectra and molecular structure: i (New York: Van Nostrand Reinhold Company) pp240-491
[7] Davies P B, Rothwell W J 1985 J. Chem. Phys. 83 5450
[8] Krishna Swamy K S 1986 Earth Moon Planets 34 281
[9] Haridass C, Prasad C V V, Reddy S P 2000 Journal of Molecular Spectroscopy 199 180
[10] Krupenie P H 1966 The band spectrum of carbon monoxide (U.S.: national standard reference data series) pp1-37
[11] Huebner W F 1990 Physics and Chemistry of Comets ; with 147 Figures (Berlin Heidelberg: Springer) pp245-303
[12] Haridass C, Prasad C V V, Reddy S P 1992 ApJ 388 669
[13] Davies P B, Rothwell W J 1985 J. Chem. Phys. 83 5450
[14] Bembenek Z, Domin U, Kepa R, Porada K, Rytel M, Zachwieja M, Jakubek Z, Janjic J D 1994 Journal of Molecular Spectroscopy 165 205
[15] DeLange O E 1968 IEEE Spectr. 5 77
[16] Yang X, Wu Y, Chen Y 2007 Journal of Molecular Spectroscopy 245 84
[17] Zhuang H, Yang X, Wu S, Bi Z, Ma L, Liu Y, Chen Y 2001 Molecular Physics 99 1447
[18] Baltzer P, Lundqvist M, Wannberg B, Karlsson L, Larsson M, Hayes M A, West J B, Siggel M R F, Parr A C, Dehmer J L 1994 J. Phys. B: At. Mol. Opt. Phys. 27 4915
[19] Huber K-P, Herzberg G 1979 Molecular Spectra and Molecular Structure. 4: Constants of Diatomic Molecules (New York: van Nostrand Reinhold Comp)
[20] Reddy R R, Viswanath R 1990 J Astrophys Astron 11 67
[21] Kępa R, Malak Z, Szajna W, Zachwieja M 2003 Journal of Molecular Spectroscopy 220 58
[22] Wu Y, Yang X, Guo Y, Chen Y 2008 Journal of Molecular Spectroscopy 248 81
[23] Coxon J A, Kępa R, Piotrowska I 2010 J. Mol. Spectrosc. 262 107
[24] Hamilton P A, Hughes A N, Sales K D 1993 The Journal of Chemical Physics 99 436
[25] Araújo J P, Ballester M Y, Lugão I G, Silva R P, Martins M P 2024 J Mol Model 30 352
[26] Tobias I, Fallon R J, Vanderslice J T 1960 J. Chem. Phys. 33 1638
[27] Krupenie P H, Weissman S 1965 J. Chem. Phys. 43 1529
[28] Singh R B, Rai D K 1966 J. Mol. Spectrosc. 19 424
[29] Locht R 1977 Chemical Physics 22 13
[30] Honjou N, Sasaki F 1979 Molecular Physics 37 1593
[31] Rosmus P, Werner H-J 1982 Molecular Physics 47 661
[32] Okada K, Iwata S 2000 The Journal of Chemical Physics 112 1804
[33] Mezei J Z, Backodissa-Kiminou R D, Tudorache D E, Morel V, Chakrabarti K, Motapon O, Dulieu O, Robert J, Tchang-Brillet W-Ü L, Bultel A, Urbain X, Tennyson J, Hassouni K, Schneider I F 2015 Plasma Sources Sci. Technol. 24 035005
[34] Weck P F, Schweitzer A, Kirby K, Hauschildt P H, Stancil P C 2004 Astrophys. J. 613 567
[35] Mourik T V, Wilson A K, Jr T H D 1999 Mol. Phys. 99 529
[36] Werner H, Knowles P J, Knizia G, Manby F R, Schütz M 2012 WIREs Comput. Mol. Sci. 2 242
[37] Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transfer 186 167
[38] Yurchenko S N, Lodi L, Tennyson J, Stolyarov A V 2016 Comput. Phys. Commun. 202 262
[39] Yurchenko S N, Al-Refaie A F, Tennyson J 2018 Astron. Astrophys. 614 A131
[40] https://physics.nist.gov/cgi-bin/ASD/levels_pt.pl [2025-3-11]
[41] Coxon J A, Kępa R, Piotrowska I 2010 Journal of Molecular Spectroscopy 262 107
[42] Ventura L R, Da Silva R S, Ballester M Y, Fellows C E 2020 Journal of Quantitative Spectroscopy and Radiative Transfer 256 107312
[43] Reddy R R, Nazeer Ahammed Y, Rama Gopal K, Baba Basha D 2004 Journal of Quantitative Spectroscopy and Radiative Transfer 85 105
[44] Szajna W, Kepa R, Zachwieja M 2004 Eur. Phys. J. D 30 49
[45] Hakalla R, Szajna W, Piotrowska I, Malicka M I, Zachwieja M, Kępa R 2019 J. Quant. Spectrosc. Radiat. Transfer 234 159
[46] Szajna W, Kȩpa R, Field R W, Hakalla R 2024 J. Quant. Spectrosc. Radiat. Transfer 324 109059
Metrics
- Abstract views: 16
- PDF Downloads: 2
- Cited By: 0