-
本文采用考虑了Davidson修正的内收缩多参考组态相互作用(icMRCI)方法, 计算了
N+2 体系的X2Σ+g ,A2Πu 和B2Σ+u 电子态的势能曲线、光谱常数和偶极跃迁矩阵元. 根据计算的分子结构数据, 给出了配分函数, 并模拟了压强在100 atm (1 atm=1×105 Pa)的条件下, 温度分别为295, 500, 1000, 2000, 2500, 5000和10000 K的不透明度. 结果表明, 由于激发态的布居数随着温度的升高逐渐增多, 不透明度分布的波长范围逐渐增大, 并且不同谱带的分界线也逐渐变得模糊. 本工作中计算的N+2 分子离子不透明度, 还在相同压强和温度条件下与其中性分子不透明度进行了对比,发现无论是波长分布范围还是峰值结构都存在显著差异. 本工作系统分析了温度效应对氮气分子离子不透明度的影响, 可以为天体物理领域提供理论和数据支持.The potential curves, spectroscopic constants and dipole moments forX2Σ+g , A2Πu andB2Σ+u state ofN+2 are calculated by the internal contraction multi reference configuration interaction (icMRCI) method, with Davidson correction taken into consideration. According to the results of molecular structures, we present the partition function in a temperature range of 100–40000 K and the opacities at different temperatures (295, 500, 1000, 2000, 2500, 5000 and 10000 K) under a fixed pressure of 100 atm. It is found that the populations of excited states increase with temperature increasing, as a result, the wavelength range of opacity also increases and band boundaries for different transitions gradually become obscure. In comparison with the cases of N2 with the same pressure and temperature, significant discrepancies are found in the wavelength ranges and structures of opacity ofN+2 for the present work. The influence of temperature on the opacity ofN+2 is studied systematically in the present work, which is expected to provide theoretical and data support for astrophysics.-
Keywords:
- nitrogen cation /
- spectroscopic constants /
- opacities
[1] Cravens T E, Robertson I P, Waite J H, Yelle R V, Kasprzak W T, Keller C N, Ledvina S A, Niemann H B, Luhmann J G, McNutt R L, Ip W H, Haya V D L, Wodarg M, Wahlund J E, Anicich V G, Vuitton V 2006 Geophys. Res. Lett. 33 L07105
Google Scholar
[2] Dutuit O, Carrasco N, Thissen R, Vuitton V, Alcaraz C, Pernot P, Lavvas P 2013 Astrophys. J. Suppl. Ser. 204 20
Google Scholar
[3] Scherf M, Lammer H, Erkaev N V, Mandt K E, Thaller S E, Marty B 2020 Space Sci. Rev. 216 1
Google Scholar
[4] Bruna P J, Grein F 2008 J. Mol. Spectrosc. 250 75
Google Scholar
[5] Erkaev N V, Scherf M, Thaller S E, Lammer H, Mezentsev A V, Ivanov V A, Mandt K E 2021 Mon. Not. R. Astron. Soc. 500 2020
Google Scholar
[6] Opitom C, Hutsemékers D, Jehin E, Rousselot P, Pozuelos F J, Manfroid J, Moulane Y, Gillon M, Benkhaldoun Z 2019 Astron. Astrophys. 624 A64
Google Scholar
[7] Jenniskens P, Laux C O, Schaller E L 2004 Astrobiology 4 109
Google Scholar
[8] Abe S, Ebizuka N, Yano H, Watanabe J I, Borovička J 2005 Astrophys. J. 618 L141
Google Scholar
[9] Ho W C, Jäger W, Cramb D C, Ozier I, Gerry M C L 1992 J. Mol. Spectrosc. 153 692
Google Scholar
[10] Shi D H, Xing W, Sun J F, Zhu Z L, Liu Y F 2011 Comput. Theor. Chem. 966 44
Google Scholar
[11] Huffman R E, Larrabee J C, Tanaka Y 1964 Disc. Faraday Soc. 37 159
Google Scholar
[12] Bruna P J, Grein F 2004 J. Mol. Spectrosc. 227 67
Google Scholar
[13] Sinhal M 2021 Ph. D. Dissertation (Basel: University of Basel)
[14] Fassbender M 1924 Z. Phys. 30 73
[15] Childs W H J 1932 Proc. Roy. Soc. 137 641
Google Scholar
[16] Meinel A B 1950 Astrophys. J. 112 562
Google Scholar
[17] Dalby F W, Douglas A E 1951 Phys. Rev. 84 843
Google Scholar
[18] Lofthus A, Krupenie P H 1977 J. Phys. Chem Ref. Data 6 113
Google Scholar
[19] Dick K A, Benesch W, Crosswhite H M, Tilford S G, Gottscho R A, Field R W 1978 J. Mol. Spectrosc. 69 95
Google Scholar
[20] Gudeman C S, Saykally R J 1984 Annu. Rev. Phys. Chem. 35 387
Google Scholar
[21] Miller T A, Suzuki T, Hirota E 1984 J. Chem. Phys. 80 4671
Google Scholar
[22] Wu S H, Chen Y Q, Zhuang H, Yang X H, Bi Z Y, Ma L S, L Y Y 2001 J. Mol. Spectrosc. 209 133
Google Scholar
[23] Moon S Y, Choe W 2003 Spectrochim. Acta Part B 58 249
Google Scholar
[24] Zhang Y P, Deng L H, Zhang J, Chen Y Q 2015 Chin. J. Chem. Phys. 28 134
Google Scholar
[25] Nishiyama T, Taguchi M, Suzuki H, Dalin P, Ogawa Y, Brandstron U, Sakanoi T 2021 Earth Planets Space 73 30
Google Scholar
[26] Chauveau S, Perrin M Y, Riviere P, Soufiani A 2002 J. Quant. Spectrosc. Radiat. Transfer 72 503
Google Scholar
[27] Yan B, Feng W 2010 Chin. Phys. B 19 033303
Google Scholar
[28] Peyrou B, Chemartin L, Lalande P, Chéron B G, Riviere P, Perrin M Y, Soufiani A 2012 J. Phys. D:Appl. Phys. 45 455203
Google Scholar
[29] Liu H, Shi D H, Wang S, Sun J F, Zhu Z L 2014 J. Quant. Spectrosc. Radiat. Transfer 147 207
Google Scholar
[30] Qin Z, Zhao J M, Liu L H 2017 J. Quant. Spectrosc. Radiat. Transfer 202 2
Google Scholar
[31] Liang R H, Liu Y M, Li F Y 2021 Phys. Scr. 96 125402
Google Scholar
[32] Liang R H, Liu Y M, Li F Y 2021 Contrib. Plasma Phys. 61 e2021000366
Google Scholar
[33] Liang R H, Liu Y M, Li F Y 2021 J. Appl. Phys. 130 063303
Google Scholar
[34] 马文, 靳奉涛, 袁建民 2007 物理学报 56 5709
Google Scholar
Ma W, Jin F T, Yuan J M 2007 Acta Phys. Sin. 56 5709
Google Scholar
[35] Lin X H, Liang G Y, Wang J G, Peng Y G, Shao B, Li R, Wu Y 2019 Chin. Phys. B 28 053101
Google Scholar
[36] Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. B 29 023101
Google Scholar
[37] Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. Lett. 37 123101
Google Scholar
[38] Li R, Liang G Y, Lin X H, Zhu Y H, Zhao S T, Wu Y 2019 Chin. Phys. B 28 043102
Google Scholar
[39] Xu X S, Dai A Q, Peng Y G, Wu Y, Wang J G 2018 J. Quant. Spectrosc. Radiat. Transfer 206 172
Google Scholar
[40] Slipher V M 1933 Mon. Not. R. Astron. Soc. 93 657
Google Scholar
[41] Feldman P D 1973 J. Geophys. Res. 78 2010
Google Scholar
[42] Langhoff S R, Bauschlicher C W 1988 J. Chem. Phys. 88 329
Google Scholar
[43] Langhoff S R, Bauschlicher C W, Partridge H 1987 J. Chem. Phys. 87 4716
Google Scholar
[44] Weck P F, Schweitzer A, Kirby K, Hauschildt P H, Stancil P C 2004 Astrophys J. 613 567
Google Scholar
[45] 陈晨,赵国鹏,祁月盈,吴勇,王建国 2022 物理学报 71 143102
Google Scholar
Chen C, Zhao G P, Qi Y Y, Wu Y, Wang J G 2022 Acta Phys. Sin. 71 143102
Google Scholar
[46] Woon D E, Dunning T H. 1995 J. Chem. Phys. 103 4572
Google Scholar
[47] Werner H J and Meyer W 1980 J. Chem. Phys. 73 2342
Google Scholar
[48] Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61
Google Scholar
[49] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
Google Scholar
[50] Werner H J, Knowles P J, Manby F R, Schütz M, Celani P, Knizia G, Korona T, Lindh R, Mitrushenkov A, Rauhut G 2010 MOLPRO: a Package of ab initio Programs
[51] Thulstrup E W, Andersen A 1975 J. Phys. B:Atom. Mol. Phys. 8 965
Google Scholar
[52] Zhang Y, Hanson D M 1986 Chem. Phys. Lett. 127 33
Google Scholar
[53] Berning A, Werner H J 1994 J. Chem. Phys. 100 1953
Google Scholar
[54] Li X Z, Paldus J 2000 Mol. Phys. 98 1185
Google Scholar
[55] Spelsberg D, Meyer W 2001 J. Chem. Phys. 115 6438
Google Scholar
[56] Bruna P J, Grein F 2008 J. Molecular Spectroscopy 250 75
[57] Li X Z, Paldus J 2009 Phys. Chem. Chem. Phys. 11 5281
Google Scholar
[58] Langhoff S R, Bauschlicher Jr C W 1988 J. Chemical Physics 88 329
[59] Bernath P F, Dalgarno A 1996 Phys. Today 49 94
期刊类型引用(22)
1. 田立良,池浩,党杰. 一种优化服务器电磁辐射性能的自动展频方法. 信息技术与信息化. 2023(05): 136-139 . 百度学术
2. 孙会琴,王思飞,田铮. 孔阵腔体屏蔽效能BLT方程修正与拓展分析. 电光与控制. 2023(07): 100-105 . 百度学术
3. 张晗,李常贤. 高频有损斜开孔腔体屏蔽效能研究. 微波学报. 2023(06): 12-17+34 . 百度学术
4. 胡小龙,李常贤. 高速列车屏蔽线转移阻抗与屏蔽效能研究. 电子测量技术. 2022(05): 80-85 . 百度学术
5. 张岩,田铮,王川川,杨清熙,王思飞. 双层腔体屏蔽效能随孔缝位置与数量变化规律研究. 电工技术学报. 2022(13): 3350-3360 . 百度学术
6. 于海波,张茂强,张晓波,虞晓阳,熊杰,刘彬. 高集成电力电子设备外壳屏蔽效能评估. 安全与电磁兼容. 2021(01): 69-72+79 . 百度学术
7. 公延飞,陈星彤,高超飞,孙剑. 一种快速预测有损腔体屏蔽效能和谐振模式的解析模型. 电工技术学报. 2021(08): 1569-1578 . 百度学术
8. 叶志红,张杰,周健健,苟丹. 有耗介质层上多导体传输线的电磁耦合时域分析方法. 物理学报. 2020(06): 47-54 . 百度学术
9. 马振洋,左晶,史春蕾,冯嘉诚,刘旭红. 机载电子设备屏蔽效能测试与优化. 航空学报. 2020(07): 226-233 . 百度学术
10. 王金田,刘雪明,商宝莹,李志勇,穆晓彤. 一种计算任意形状孔缝平均电极化率密度的方法. 电子测量技术. 2019(03): 31-34 . 百度学术
11. 王殿海,石成英,蔡星会,易昭湘. 有内置薄板腔体的HEMP屏蔽效能研究. 微波学报. 2019(01): 87-90 . 百度学术
12. 白婉欣,李天乐,郭安琪,成睿琦,焦重庆. 平面波照射下无限大导体板上周期孔阵屏蔽效能的解析研究. 物理学报. 2019(10): 64-72 . 百度学术
13. 阎芳,刘旭红,王鹏,马振洋,史春蕾,于新海,赵聪. 高强辐射场下不同孔阵的金属腔体屏蔽效能研究. 电光与控制. 2019(08): 90-94+100 . 百度学术
14. 郝建红,公延飞,蒋璐行,范杰清. 内置电路板的复杂多腔体电磁串扰屏蔽效能的解析研究. 电工技术学报. 2018(03): 670-679 . 百度学术
15. 郝建红,蒋璐行,范杰清,公延飞. 内置介质板的开孔箱体屏蔽效能电磁拓扑模型. 电工技术学报. 2017(09): 101-111 . 百度学术
16. 陈珂,杜平安,任丹. 一种基于缝隙天线阻抗的带缝腔体谐振频率计算方法. 电子学报. 2017(01): 232-237 . 百度学术
17. 高雪莲,马士杰,杨凯,李丹. 考虑高次模的孔缝腔体屏蔽效能计算方法. 高电压技术. 2017(10): 3344-3350 . 百度学术
18. 刘宁,张如彬,金杰. 投弃式仪器数据传输信道时频响应求解方法. 电波科学学报. 2016(05): 1009-1015 . 百度学术
19. 阚勇,闫丽萍,赵翔,周海京,刘强,黄卡玛. 基于电磁拓扑的多腔体屏蔽效能快速算法. 物理学报. 2016(03): 88-99 . 百度学术
20. 张玉廷,李冉,高文军,吕争,张华. 等效导纳模型分析航天器VHF/UHF频段屏蔽效能. 宇航学报. 2016(11): 1392-1397 . 百度学术
21. 陈珂,王丹丹,杜平安. 孔缝腔体电磁谐振特性的影响因素分析. 中国科技论文. 2016(20): 2307-2311 . 百度学术
22. 罗静雯,杜平安,任丹,肖培. 基于BLT方程的双层腔体屏蔽效能计算方法. 强激光与粒子束. 2015(11): 166-171 . 百度学术
其他类型引用(16)
-
表 1
N+2 分子离子X2Σ+g ,A2Πu 和B2Σ+u 的振动能级间隔(单位: cm–1).Table 1. Vibration energy level intervals for
X2Σ+g ,A2Πu andB2Σ+u state ofN+2 (in cm–1).ν X2Σ+g A2Πu B2Σ+u This work Experiment[18] This work Experiment[18] This work Experiment[18] 1 2160.20 2186.3 1860.80 1873.1 2350.81 2371.5 2 2127.69 2131.8 1830.13 1843.2 2296.85 2318.8 3 2095.20 2118.8 1800.42 1813.3 2236.54 2260.4 4 2062.18 2054.0 1770.50 1783.7 2169.60 2196.4 5 2028.65 2057.7 1740.20 2095.35 2122.8 6 1994.38 2003.6 1710.16 2008.01 2041.0 7 1960.15 1977.9 1680.47 1904.72 1951.1 8 1926.84 1940.7 1650.76 1790.50 1838.2 9 1893.06 1903.8 1621.04 1671.73 1726.9 10 1856.93 1870.9 1591.27 1553.84 1596.7 11 1818.04 1835.8 1561.57 1441.30 1479.9 12 1776.20 1800.6 1531.56 1339.77 1371.4 13 1733.59 1764.7 1501.57 1251.04 1276.3 14 1693.16 1733.5 1471.76 1175.43 1196.3 15 1657.08 1684.3 1442.16 1111.18 1126.6 16 1625.93 1655.8 1412.80 1053.80 1067.1 17 1597.90 1616.3 1383.51 1002.49 1015.5 18 1570.43 1576.8 1354.06 955.83 966.0 19 1541.51 1537.3 1324.26 913.25 922.0 20 1510.09 1497.8 1294.02 873.37 882.0 表 2
N+2 的光谱常数.Table 2. Spectroscopic constants of
N+2 .State Source Re/Å Te/cm−1 ωe/cm−1 Be/cm−1 De/eV X2Σ+g This work 1.1191 0 2196.2324 1.9227 8.7145 Expt.[18] 1.116 0 2207.00 1.9319 8.7128 Theory[51] 1.17 0 2075 8.4 Theory[52] 1.106 0 1.97 Theory[53] 1.1201 2193.4 1.919 Theory[54] 1.1203 2195 1.917 Theory[55] 1.1189 2204.5 1.924 Theory[56] 1.1261 0 2140 Theory[57] 1.12 2185 A2Πu This work 1.1777 8911.1935 1890.3412 1.7358 7.6096 Expt.[18] 1.177 9016.4 1903.53 1.748 7.5948 Theory[51] 1.26 14517.97 1693 6.7 Theory[52] 1.165 9016 1.773 Theory[53] 1.1781 1898.0 1.735 Theory[54] 1.1762 1918 1.739 Theory[55] 1.1772 1900.1 1.737 Theory[56] 1.1875 8872.10 1850 Theory[57] 1.177 1911 B2Σ+u This work 1.0772 25861.741 2398.8591 2.0752 5.5273 Expt.[18] 1.077 25566.0 2419.84 2.073 5.5428 Theory[51] 1.16 30649.06 1805 4.6 Theory[52] 1.075 25566 2.084 Theory[58] 1.0832 25823 2441.8 Theory[54] 1.0776 2425 2.072 Theory[56] 1.0838 25325.80 2370 -
[1] Cravens T E, Robertson I P, Waite J H, Yelle R V, Kasprzak W T, Keller C N, Ledvina S A, Niemann H B, Luhmann J G, McNutt R L, Ip W H, Haya V D L, Wodarg M, Wahlund J E, Anicich V G, Vuitton V 2006 Geophys. Res. Lett. 33 L07105
Google Scholar
[2] Dutuit O, Carrasco N, Thissen R, Vuitton V, Alcaraz C, Pernot P, Lavvas P 2013 Astrophys. J. Suppl. Ser. 204 20
Google Scholar
[3] Scherf M, Lammer H, Erkaev N V, Mandt K E, Thaller S E, Marty B 2020 Space Sci. Rev. 216 1
Google Scholar
[4] Bruna P J, Grein F 2008 J. Mol. Spectrosc. 250 75
Google Scholar
[5] Erkaev N V, Scherf M, Thaller S E, Lammer H, Mezentsev A V, Ivanov V A, Mandt K E 2021 Mon. Not. R. Astron. Soc. 500 2020
Google Scholar
[6] Opitom C, Hutsemékers D, Jehin E, Rousselot P, Pozuelos F J, Manfroid J, Moulane Y, Gillon M, Benkhaldoun Z 2019 Astron. Astrophys. 624 A64
Google Scholar
[7] Jenniskens P, Laux C O, Schaller E L 2004 Astrobiology 4 109
Google Scholar
[8] Abe S, Ebizuka N, Yano H, Watanabe J I, Borovička J 2005 Astrophys. J. 618 L141
Google Scholar
[9] Ho W C, Jäger W, Cramb D C, Ozier I, Gerry M C L 1992 J. Mol. Spectrosc. 153 692
Google Scholar
[10] Shi D H, Xing W, Sun J F, Zhu Z L, Liu Y F 2011 Comput. Theor. Chem. 966 44
Google Scholar
[11] Huffman R E, Larrabee J C, Tanaka Y 1964 Disc. Faraday Soc. 37 159
Google Scholar
[12] Bruna P J, Grein F 2004 J. Mol. Spectrosc. 227 67
Google Scholar
[13] Sinhal M 2021 Ph. D. Dissertation (Basel: University of Basel)
[14] Fassbender M 1924 Z. Phys. 30 73
[15] Childs W H J 1932 Proc. Roy. Soc. 137 641
Google Scholar
[16] Meinel A B 1950 Astrophys. J. 112 562
Google Scholar
[17] Dalby F W, Douglas A E 1951 Phys. Rev. 84 843
Google Scholar
[18] Lofthus A, Krupenie P H 1977 J. Phys. Chem Ref. Data 6 113
Google Scholar
[19] Dick K A, Benesch W, Crosswhite H M, Tilford S G, Gottscho R A, Field R W 1978 J. Mol. Spectrosc. 69 95
Google Scholar
[20] Gudeman C S, Saykally R J 1984 Annu. Rev. Phys. Chem. 35 387
Google Scholar
[21] Miller T A, Suzuki T, Hirota E 1984 J. Chem. Phys. 80 4671
Google Scholar
[22] Wu S H, Chen Y Q, Zhuang H, Yang X H, Bi Z Y, Ma L S, L Y Y 2001 J. Mol. Spectrosc. 209 133
Google Scholar
[23] Moon S Y, Choe W 2003 Spectrochim. Acta Part B 58 249
Google Scholar
[24] Zhang Y P, Deng L H, Zhang J, Chen Y Q 2015 Chin. J. Chem. Phys. 28 134
Google Scholar
[25] Nishiyama T, Taguchi M, Suzuki H, Dalin P, Ogawa Y, Brandstron U, Sakanoi T 2021 Earth Planets Space 73 30
Google Scholar
[26] Chauveau S, Perrin M Y, Riviere P, Soufiani A 2002 J. Quant. Spectrosc. Radiat. Transfer 72 503
Google Scholar
[27] Yan B, Feng W 2010 Chin. Phys. B 19 033303
Google Scholar
[28] Peyrou B, Chemartin L, Lalande P, Chéron B G, Riviere P, Perrin M Y, Soufiani A 2012 J. Phys. D:Appl. Phys. 45 455203
Google Scholar
[29] Liu H, Shi D H, Wang S, Sun J F, Zhu Z L 2014 J. Quant. Spectrosc. Radiat. Transfer 147 207
Google Scholar
[30] Qin Z, Zhao J M, Liu L H 2017 J. Quant. Spectrosc. Radiat. Transfer 202 2
Google Scholar
[31] Liang R H, Liu Y M, Li F Y 2021 Phys. Scr. 96 125402
Google Scholar
[32] Liang R H, Liu Y M, Li F Y 2021 Contrib. Plasma Phys. 61 e2021000366
Google Scholar
[33] Liang R H, Liu Y M, Li F Y 2021 J. Appl. Phys. 130 063303
Google Scholar
[34] 马文, 靳奉涛, 袁建民 2007 物理学报 56 5709
Google Scholar
Ma W, Jin F T, Yuan J M 2007 Acta Phys. Sin. 56 5709
Google Scholar
[35] Lin X H, Liang G Y, Wang J G, Peng Y G, Shao B, Li R, Wu Y 2019 Chin. Phys. B 28 053101
Google Scholar
[36] Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. B 29 023101
Google Scholar
[37] Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. Lett. 37 123101
Google Scholar
[38] Li R, Liang G Y, Lin X H, Zhu Y H, Zhao S T, Wu Y 2019 Chin. Phys. B 28 043102
Google Scholar
[39] Xu X S, Dai A Q, Peng Y G, Wu Y, Wang J G 2018 J. Quant. Spectrosc. Radiat. Transfer 206 172
Google Scholar
[40] Slipher V M 1933 Mon. Not. R. Astron. Soc. 93 657
Google Scholar
[41] Feldman P D 1973 J. Geophys. Res. 78 2010
Google Scholar
[42] Langhoff S R, Bauschlicher C W 1988 J. Chem. Phys. 88 329
Google Scholar
[43] Langhoff S R, Bauschlicher C W, Partridge H 1987 J. Chem. Phys. 87 4716
Google Scholar
[44] Weck P F, Schweitzer A, Kirby K, Hauschildt P H, Stancil P C 2004 Astrophys J. 613 567
Google Scholar
[45] 陈晨,赵国鹏,祁月盈,吴勇,王建国 2022 物理学报 71 143102
Google Scholar
Chen C, Zhao G P, Qi Y Y, Wu Y, Wang J G 2022 Acta Phys. Sin. 71 143102
Google Scholar
[46] Woon D E, Dunning T H. 1995 J. Chem. Phys. 103 4572
Google Scholar
[47] Werner H J and Meyer W 1980 J. Chem. Phys. 73 2342
Google Scholar
[48] Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61
Google Scholar
[49] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
Google Scholar
[50] Werner H J, Knowles P J, Manby F R, Schütz M, Celani P, Knizia G, Korona T, Lindh R, Mitrushenkov A, Rauhut G 2010 MOLPRO: a Package of ab initio Programs
[51] Thulstrup E W, Andersen A 1975 J. Phys. B:Atom. Mol. Phys. 8 965
Google Scholar
[52] Zhang Y, Hanson D M 1986 Chem. Phys. Lett. 127 33
Google Scholar
[53] Berning A, Werner H J 1994 J. Chem. Phys. 100 1953
Google Scholar
[54] Li X Z, Paldus J 2000 Mol. Phys. 98 1185
Google Scholar
[55] Spelsberg D, Meyer W 2001 J. Chem. Phys. 115 6438
Google Scholar
[56] Bruna P J, Grein F 2008 J. Molecular Spectroscopy 250 75
[57] Li X Z, Paldus J 2009 Phys. Chem. Chem. Phys. 11 5281
Google Scholar
[58] Langhoff S R, Bauschlicher Jr C W 1988 J. Chemical Physics 88 329
[59] Bernath P F, Dalgarno A 1996 Phys. Today 49 94
期刊类型引用(22)
1. 田立良,池浩,党杰. 一种优化服务器电磁辐射性能的自动展频方法. 信息技术与信息化. 2023(05): 136-139 . 百度学术
2. 孙会琴,王思飞,田铮. 孔阵腔体屏蔽效能BLT方程修正与拓展分析. 电光与控制. 2023(07): 100-105 . 百度学术
3. 张晗,李常贤. 高频有损斜开孔腔体屏蔽效能研究. 微波学报. 2023(06): 12-17+34 . 百度学术
4. 胡小龙,李常贤. 高速列车屏蔽线转移阻抗与屏蔽效能研究. 电子测量技术. 2022(05): 80-85 . 百度学术
5. 张岩,田铮,王川川,杨清熙,王思飞. 双层腔体屏蔽效能随孔缝位置与数量变化规律研究. 电工技术学报. 2022(13): 3350-3360 . 百度学术
6. 于海波,张茂强,张晓波,虞晓阳,熊杰,刘彬. 高集成电力电子设备外壳屏蔽效能评估. 安全与电磁兼容. 2021(01): 69-72+79 . 百度学术
7. 公延飞,陈星彤,高超飞,孙剑. 一种快速预测有损腔体屏蔽效能和谐振模式的解析模型. 电工技术学报. 2021(08): 1569-1578 . 百度学术
8. 叶志红,张杰,周健健,苟丹. 有耗介质层上多导体传输线的电磁耦合时域分析方法. 物理学报. 2020(06): 47-54 . 百度学术
9. 马振洋,左晶,史春蕾,冯嘉诚,刘旭红. 机载电子设备屏蔽效能测试与优化. 航空学报. 2020(07): 226-233 . 百度学术
10. 王金田,刘雪明,商宝莹,李志勇,穆晓彤. 一种计算任意形状孔缝平均电极化率密度的方法. 电子测量技术. 2019(03): 31-34 . 百度学术
11. 王殿海,石成英,蔡星会,易昭湘. 有内置薄板腔体的HEMP屏蔽效能研究. 微波学报. 2019(01): 87-90 . 百度学术
12. 白婉欣,李天乐,郭安琪,成睿琦,焦重庆. 平面波照射下无限大导体板上周期孔阵屏蔽效能的解析研究. 物理学报. 2019(10): 64-72 . 百度学术
13. 阎芳,刘旭红,王鹏,马振洋,史春蕾,于新海,赵聪. 高强辐射场下不同孔阵的金属腔体屏蔽效能研究. 电光与控制. 2019(08): 90-94+100 . 百度学术
14. 郝建红,公延飞,蒋璐行,范杰清. 内置电路板的复杂多腔体电磁串扰屏蔽效能的解析研究. 电工技术学报. 2018(03): 670-679 . 百度学术
15. 郝建红,蒋璐行,范杰清,公延飞. 内置介质板的开孔箱体屏蔽效能电磁拓扑模型. 电工技术学报. 2017(09): 101-111 . 百度学术
16. 陈珂,杜平安,任丹. 一种基于缝隙天线阻抗的带缝腔体谐振频率计算方法. 电子学报. 2017(01): 232-237 . 百度学术
17. 高雪莲,马士杰,杨凯,李丹. 考虑高次模的孔缝腔体屏蔽效能计算方法. 高电压技术. 2017(10): 3344-3350 . 百度学术
18. 刘宁,张如彬,金杰. 投弃式仪器数据传输信道时频响应求解方法. 电波科学学报. 2016(05): 1009-1015 . 百度学术
19. 阚勇,闫丽萍,赵翔,周海京,刘强,黄卡玛. 基于电磁拓扑的多腔体屏蔽效能快速算法. 物理学报. 2016(03): 88-99 . 百度学术
20. 张玉廷,李冉,高文军,吕争,张华. 等效导纳模型分析航天器VHF/UHF频段屏蔽效能. 宇航学报. 2016(11): 1392-1397 . 百度学术
21. 陈珂,王丹丹,杜平安. 孔缝腔体电磁谐振特性的影响因素分析. 中国科技论文. 2016(20): 2307-2311 . 百度学术
22. 罗静雯,杜平安,任丹,肖培. 基于BLT方程的双层腔体屏蔽效能计算方法. 强激光与粒子束. 2015(11): 166-171 . 百度学术
其他类型引用(16)
计量
- 文章访问数: 4903
- PDF下载量: 77
- 被引次数: 38