搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N+2分子离子X2Σ+g, A2ΠuB2Σ+u态的不透明度

陈晨 赵国鹏 祁月盈 吴勇 王建国

Luo Jing-Wen, Du Ping-An, Ren Dan, Nie Bao-Lin. A BLT equation-based approach for calculating the shielding effectiveness of enclosures with apertures. Acta Phys. Sin., 2015, 64(1): 010701. doi: 10.7498/aps.64.010701
Citation: Luo Jing-Wen, Du Ping-An, Ren Dan, Nie Bao-Lin. A BLT equation-based approach for calculating the shielding effectiveness of enclosures with apertures. Acta Phys. Sin., 2015, 64(1): 010701. doi: 10.7498/aps.64.010701

N+2分子离子X2Σ+g, A2ΠuB2Σ+u态的不透明度

陈晨, 赵国鹏, 祁月盈, 吴勇, 王建国

Molecular opacities of X2Σ+g, A2Πu and B2Σ+u states of nitrogen cation

Chen Chen, Zhao Guo-Peng, Qi Yue-Ying, Wu Yong, Wang Jian-Guo
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文采用考虑了Davidson修正的内收缩多参考组态相互作用(icMRCI)方法, 计算了N+2体系的X2Σ+g,A2ΠuB2Σ+u电子态的势能曲线、光谱常数和偶极跃迁矩阵元. 根据计算的分子结构数据, 给出了配分函数, 并模拟了压强在100 atm (1 atm=1×105 Pa)的条件下, 温度分别为295, 500, 1000, 2000, 2500, 5000和10000 K的不透明度. 结果表明, 由于激发态的布居数随着温度的升高逐渐增多, 不透明度分布的波长范围逐渐增大, 并且不同谱带的分界线也逐渐变得模糊. 本工作中计算的N+2分子离子不透明度, 还在相同压强和温度条件下与其中性分子不透明度进行了对比,发现无论是波长分布范围还是峰值结构都存在显著差异. 本工作系统分析了温度效应对氮气分子离子不透明度的影响, 可以为天体物理领域提供理论和数据支持.
    The potential curves, spectroscopic constants and dipole moments for X2Σ+g, A2Πu and B2Σ+u state of N+2 are calculated by the internal contraction multi reference configuration interaction (icMRCI) method, with Davidson correction taken into consideration. According to the results of molecular structures, we present the partition function in a temperature range of 100–40000 K and the opacities at different temperatures (295, 500, 1000, 2000, 2500, 5000 and 10000 K) under a fixed pressure of 100 atm. It is found that the populations of excited states increase with temperature increasing, as a result, the wavelength range of opacity also increases and band boundaries for different transitions gradually become obscure. In comparison with the cases of N2 with the same pressure and temperature, significant discrepancies are found in the wavelength ranges and structures of opacity of N+2 for the present work. The influence of temperature on the opacity of N+2 is studied systematically in the present work, which is expected to provide theoretical and data support for astrophysics.
      PACS:
      07.05.Tp(Computer modeling and simulation)
      41.20.Gz(Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems)
      41.90.+e(Other topics in electromagnetism; electron and ion optics)
      通信作者: 赵国鹏, guopengzhao@zjxu.edu.cn ; 祁月盈, yying_qi@zjxu.edu.cn ; 吴勇, wu_yong@iapcm.ac.cn
    • 基金项目: 国家重点研发计划 (批准号: 2017YFA0403200)和国家自然科学基金 (批准号: 12105119)资助的课题.
      Corresponding author: Zhao Guo-Peng, guopengzhao@zjxu.edu.cn ; Qi Yue-Ying, yying_qi@zjxu.edu.cn ; Wu Yong, wu_yong@iapcm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403200) and the National Natural Science Foundation of China (Grant No. 12105119).
    [1]

    Cravens T E, Robertson I P, Waite J H, Yelle R V, Kasprzak W T, Keller C N, Ledvina S A, Niemann H B, Luhmann J G, McNutt R L, Ip W H, Haya V D L, Wodarg M, Wahlund J E, Anicich V G, Vuitton V 2006 Geophys. Res. Lett. 33 L07105Google Scholar

    [2]

    Dutuit O, Carrasco N, Thissen R, Vuitton V, Alcaraz C, Pernot P, Lavvas P 2013 Astrophys. J. Suppl. Ser. 204 20Google Scholar

    [3]

    Scherf M, Lammer H, Erkaev N V, Mandt K E, Thaller S E, Marty B 2020 Space Sci. Rev. 216 1Google Scholar

    [4]

    Bruna P J, Grein F 2008 J. Mol. Spectrosc. 250 75Google Scholar

    [5]

    Erkaev N V, Scherf M, Thaller S E, Lammer H, Mezentsev A V, Ivanov V A, Mandt K E 2021 Mon. Not. R. Astron. Soc. 500 2020Google Scholar

    [6]

    Opitom C, Hutsemékers D, Jehin E, Rousselot P, Pozuelos F J, Manfroid J, Moulane Y, Gillon M, Benkhaldoun Z 2019 Astron. Astrophys. 624 A64Google Scholar

    [7]

    Jenniskens P, Laux C O, Schaller E L 2004 Astrobiology 4 109Google Scholar

    [8]

    Abe S, Ebizuka N, Yano H, Watanabe J I, Borovička J 2005 Astrophys. J. 618 L141Google Scholar

    [9]

    Ho W C, Jäger W, Cramb D C, Ozier I, Gerry M C L 1992 J. Mol. Spectrosc. 153 692Google Scholar

    [10]

    Shi D H, Xing W, Sun J F, Zhu Z L, Liu Y F 2011 Comput. Theor. Chem. 966 44Google Scholar

    [11]

    Huffman R E, Larrabee J C, Tanaka Y 1964 Disc. Faraday Soc. 37 159Google Scholar

    [12]

    Bruna P J, Grein F 2004 J. Mol. Spectrosc. 227 67Google Scholar

    [13]

    Sinhal M 2021 Ph. D. Dissertation (Basel: University of Basel)

    [14]

    Fassbender M 1924 Z. Phys. 30 73

    [15]

    Childs W H J 1932 Proc. Roy. Soc. 137 641Google Scholar

    [16]

    Meinel A B 1950 Astrophys. J. 112 562Google Scholar

    [17]

    Dalby F W, Douglas A E 1951 Phys. Rev. 84 843Google Scholar

    [18]

    Lofthus A, Krupenie P H 1977 J. Phys. Chem Ref. Data 6 113Google Scholar

    [19]

    Dick K A, Benesch W, Crosswhite H M, Tilford S G, Gottscho R A, Field R W 1978 J. Mol. Spectrosc. 69 95Google Scholar

    [20]

    Gudeman C S, Saykally R J 1984 Annu. Rev. Phys. Chem. 35 387Google Scholar

    [21]

    Miller T A, Suzuki T, Hirota E 1984 J. Chem. Phys. 80 4671Google Scholar

    [22]

    Wu S H, Chen Y Q, Zhuang H, Yang X H, Bi Z Y, Ma L S, L Y Y 2001 J. Mol. Spectrosc. 209 133Google Scholar

    [23]

    Moon S Y, Choe W 2003 Spectrochim. Acta Part B 58 249Google Scholar

    [24]

    Zhang Y P, Deng L H, Zhang J, Chen Y Q 2015 Chin. J. Chem. Phys. 28 134Google Scholar

    [25]

    Nishiyama T, Taguchi M, Suzuki H, Dalin P, Ogawa Y, Brandstron U, Sakanoi T 2021 Earth Planets Space 73 30Google Scholar

    [26]

    Chauveau S, Perrin M Y, Riviere P, Soufiani A 2002 J. Quant. Spectrosc. Radiat. Transfer 72 503Google Scholar

    [27]

    Yan B, Feng W 2010 Chin. Phys. B 19 033303Google Scholar

    [28]

    Peyrou B, Chemartin L, Lalande P, Chéron B G, Riviere P, Perrin M Y, Soufiani A 2012 J. Phys. D:Appl. Phys. 45 455203Google Scholar

    [29]

    Liu H, Shi D H, Wang S, Sun J F, Zhu Z L 2014 J. Quant. Spectrosc. Radiat. Transfer 147 207Google Scholar

    [30]

    Qin Z, Zhao J M, Liu L H 2017 J. Quant. Spectrosc. Radiat. Transfer 202 2Google Scholar

    [31]

    Liang R H, Liu Y M, Li F Y 2021 Phys. Scr. 96 125402Google Scholar

    [32]

    Liang R H, Liu Y M, Li F Y 2021 Contrib. Plasma Phys. 61 e2021000366Google Scholar

    [33]

    Liang R H, Liu Y M, Li F Y 2021 J. Appl. Phys. 130 063303Google Scholar

    [34]

    马文, 靳奉涛, 袁建民 2007 物理学报 56 5709Google Scholar

    Ma W, Jin F T, Yuan J M 2007 Acta Phys. Sin. 56 5709Google Scholar

    [35]

    Lin X H, Liang G Y, Wang J G, Peng Y G, Shao B, Li R, Wu Y 2019 Chin. Phys. B 28 053101Google Scholar

    [36]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. B 29 023101Google Scholar

    [37]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. Lett. 37 123101Google Scholar

    [38]

    Li R, Liang G Y, Lin X H, Zhu Y H, Zhao S T, Wu Y 2019 Chin. Phys. B 28 043102Google Scholar

    [39]

    Xu X S, Dai A Q, Peng Y G, Wu Y, Wang J G 2018 J. Quant. Spectrosc. Radiat. Transfer 206 172Google Scholar

    [40]

    Slipher V M 1933 Mon. Not. R. Astron. Soc. 93 657Google Scholar

    [41]

    Feldman P D 1973 J. Geophys. Res. 78 2010Google Scholar

    [42]

    Langhoff S R, Bauschlicher C W 1988 J. Chem. Phys. 88 329Google Scholar

    [43]

    Langhoff S R, Bauschlicher C W, Partridge H 1987 J. Chem. Phys. 87 4716Google Scholar

    [44]

    Weck P F, Schweitzer A, Kirby K, Hauschildt P H, Stancil P C 2004 Astrophys J. 613 567Google Scholar

    [45]

    陈晨,赵国鹏,祁月盈,吴勇,王建国 2022 物理学报 71 143102Google Scholar

    Chen C, Zhao G P, Qi Y Y, Wu Y, Wang J G 2022 Acta Phys. Sin. 71 143102Google Scholar

    [46]

    Woon D E, Dunning T H. 1995 J. Chem. Phys. 103 4572Google Scholar

    [47]

    Werner H J and Meyer W 1980 J. Chem. Phys. 73 2342Google Scholar

    [48]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [49]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [50]

    Werner H J, Knowles P J, Manby F R, Schütz M, Celani P, Knizia G, Korona T, Lindh R, Mitrushenkov A, Rauhut G 2010 MOLPRO: a Package of ab initio Programs

    [51]

    Thulstrup E W, Andersen A 1975 J. Phys. B:Atom. Mol. Phys. 8 965Google Scholar

    [52]

    Zhang Y, Hanson D M 1986 Chem. Phys. Lett. 127 33Google Scholar

    [53]

    Berning A, Werner H J 1994 J. Chem. Phys. 100 1953Google Scholar

    [54]

    Li X Z, Paldus J 2000 Mol. Phys. 98 1185Google Scholar

    [55]

    Spelsberg D, Meyer W 2001 J. Chem. Phys. 115 6438Google Scholar

    [56]

    Bruna P J, Grein F 2008 J. Molecular Spectroscopy 250 75

    [57]

    Li X Z, Paldus J 2009 Phys. Chem. Chem. Phys. 11 5281Google Scholar

    [58]

    Langhoff S R, Bauschlicher Jr C W 1988 J. Chemical Physics 88 329

    [59]

    Bernath P F, Dalgarno A 1996 Phys. Today 49 94

    期刊类型引用(22)

    1. 田立良,池浩,党杰. 一种优化服务器电磁辐射性能的自动展频方法. 信息技术与信息化. 2023(05): 136-139 . 百度学术
    2. 孙会琴,王思飞,田铮. 孔阵腔体屏蔽效能BLT方程修正与拓展分析. 电光与控制. 2023(07): 100-105 . 百度学术
    3. 张晗,李常贤. 高频有损斜开孔腔体屏蔽效能研究. 微波学报. 2023(06): 12-17+34 . 百度学术
    4. 胡小龙,李常贤. 高速列车屏蔽线转移阻抗与屏蔽效能研究. 电子测量技术. 2022(05): 80-85 . 百度学术
    5. 张岩,田铮,王川川,杨清熙,王思飞. 双层腔体屏蔽效能随孔缝位置与数量变化规律研究. 电工技术学报. 2022(13): 3350-3360 . 百度学术
    6. 于海波,张茂强,张晓波,虞晓阳,熊杰,刘彬. 高集成电力电子设备外壳屏蔽效能评估. 安全与电磁兼容. 2021(01): 69-72+79 . 百度学术
    7. 公延飞,陈星彤,高超飞,孙剑. 一种快速预测有损腔体屏蔽效能和谐振模式的解析模型. 电工技术学报. 2021(08): 1569-1578 . 百度学术
    8. 叶志红,张杰,周健健,苟丹. 有耗介质层上多导体传输线的电磁耦合时域分析方法. 物理学报. 2020(06): 47-54 . 百度学术
    9. 马振洋,左晶,史春蕾,冯嘉诚,刘旭红. 机载电子设备屏蔽效能测试与优化. 航空学报. 2020(07): 226-233 . 百度学术
    10. 王金田,刘雪明,商宝莹,李志勇,穆晓彤. 一种计算任意形状孔缝平均电极化率密度的方法. 电子测量技术. 2019(03): 31-34 . 百度学术
    11. 王殿海,石成英,蔡星会,易昭湘. 有内置薄板腔体的HEMP屏蔽效能研究. 微波学报. 2019(01): 87-90 . 百度学术
    12. 白婉欣,李天乐,郭安琪,成睿琦,焦重庆. 平面波照射下无限大导体板上周期孔阵屏蔽效能的解析研究. 物理学报. 2019(10): 64-72 . 百度学术
    13. 阎芳,刘旭红,王鹏,马振洋,史春蕾,于新海,赵聪. 高强辐射场下不同孔阵的金属腔体屏蔽效能研究. 电光与控制. 2019(08): 90-94+100 . 百度学术
    14. 郝建红,公延飞,蒋璐行,范杰清. 内置电路板的复杂多腔体电磁串扰屏蔽效能的解析研究. 电工技术学报. 2018(03): 670-679 . 百度学术
    15. 郝建红,蒋璐行,范杰清,公延飞. 内置介质板的开孔箱体屏蔽效能电磁拓扑模型. 电工技术学报. 2017(09): 101-111 . 百度学术
    16. 陈珂,杜平安,任丹. 一种基于缝隙天线阻抗的带缝腔体谐振频率计算方法. 电子学报. 2017(01): 232-237 . 百度学术
    17. 高雪莲,马士杰,杨凯,李丹. 考虑高次模的孔缝腔体屏蔽效能计算方法. 高电压技术. 2017(10): 3344-3350 . 百度学术
    18. 刘宁,张如彬,金杰. 投弃式仪器数据传输信道时频响应求解方法. 电波科学学报. 2016(05): 1009-1015 . 百度学术
    19. 阚勇,闫丽萍,赵翔,周海京,刘强,黄卡玛. 基于电磁拓扑的多腔体屏蔽效能快速算法. 物理学报. 2016(03): 88-99 . 百度学术
    20. 张玉廷,李冉,高文军,吕争,张华. 等效导纳模型分析航天器VHF/UHF频段屏蔽效能. 宇航学报. 2016(11): 1392-1397 . 百度学术
    21. 陈珂,王丹丹,杜平安. 孔缝腔体电磁谐振特性的影响因素分析. 中国科技论文. 2016(20): 2307-2311 . 百度学术
    22. 罗静雯,杜平安,任丹,肖培. 基于BLT方程的双层腔体屏蔽效能计算方法. 强激光与粒子束. 2015(11): 166-171 . 百度学术

    其他类型引用(16)

  • 图 1  N+2X2Σ+g, A2ΠuB2Σ+u态的势能曲线

    Fig. 1.  Potential energy curves for the X2Σ+g, A2Πu and B2Σ+u states of N+2.

    图 2  N + 2的偶极跃迁矩阵元随核间距的变化关系

    Fig. 2.  Transition dipole moments of N + 2 as a function of internuclear distance R.

    图 3  N + 2的配分函数

    Fig. 3.  The partition functions of N + 2.

    图 4  压强为100 atm时, N + 2(黑线)和N2(红线)[45] 在不同温度下的不透明度 (a) 295 K, (b) 500 K, (c) 1000 K, (d) 2000 K.

    Fig. 4.  Opacities of N + 2 (black line) and N2 (red line) [45] at different temperatures under pressure of 100 atm, (a) 295 K, (b) 500 K, (c) 1000 K, (d) 2000 K.

    图 5  压强为100 atm时, N + 2(黑线)和N2(红线)[45] 在不同温度下的不透明度 (a) 2500 K, (b) 5000 K, (c) 10000 K.

    Fig. 5.  Opacities of N + 2 (black line) and N2 (red line) [45] at different temperatures under pressure of 100 atm, (a) 2500 K, (b) 5000 K, (c) 10000 K.

    表 1  N+2分子离子X2Σ+g, A2ΠuB2Σ+u的振动能级间隔(单位: cm–1).

    Table 1.  Vibration energy level intervals for X2Σ+g, A2Πu and B2Σ+u state of N+2 (in cm–1).

    νX2Σ+gA2ΠuB2Σ+u
    This workExperiment[18]This workExperiment[18]This workExperiment[18]
    12160.202186.31860.801873.12350.812371.5
    22127.692131.81830.131843.22296.852318.8
    32095.202118.81800.421813.32236.542260.4
    42062.182054.01770.501783.72169.602196.4
    52028.652057.71740.202095.352122.8
    61994.382003.61710.162008.012041.0
    71960.151977.91680.471904.721951.1
    81926.841940.71650.761790.501838.2
    91893.061903.81621.041671.731726.9
    101856.931870.91591.271553.841596.7
    111818.041835.81561.571441.301479.9
    121776.201800.61531.561339.771371.4
    131733.591764.71501.571251.041276.3
    141693.161733.51471.761175.431196.3
    151657.081684.31442.161111.181126.6
    161625.931655.81412.801053.801067.1
    171597.901616.31383.511002.491015.5
    181570.431576.81354.06955.83966.0
    191541.511537.31324.26913.25922.0
    201510.091497.81294.02873.37882.0
    下载: 导出CSV

    表 2  N+2的光谱常数.

    Table 2.  Spectroscopic constants of N+2.

    StateSource ReTe/cm1ωe/cm1Be/cm1De/eV
    X2Σ+gThis work1.119102196.23241.92278.7145
    Expt.[18]1.11602207.001.93198.7128
    Theory[51]1.17020758.4
    Theory[52]1.10601.97
    Theory[53]1.12012193.41.919
    Theory[54]1.120321951.917
    Theory[55]1.11892204.51.924
    Theory[56]1.126102140
    Theory[57]1.122185
    A2ΠuThis work1.17778911.19351890.34121.73587.6096
    Expt.[18]1.1779016.41903.531.7487.5948
    Theory[51]1.2614517.9716936.7
    Theory[52]1.16590161.773
    Theory[53]1.17811898.01.735
    Theory[54]1.176219181.739
    Theory[55]1.17721900.11.737
    Theory[56]1.18758872.101850
    Theory[57]1.1771911
    B2Σ+uThis work1.077225861.7412398.85912.07525.5273
    Expt.[18]1.07725566.02419.842.0735.5428
    Theory[51]1.1630649.0618054.6
    Theory[52]1.075255662.084
    Theory[58]1.0832258232441.8
    Theory[54]1.077624252.072
     Theory[56]1.083825325.802370
    下载: 导出CSV
  • [1]

    Cravens T E, Robertson I P, Waite J H, Yelle R V, Kasprzak W T, Keller C N, Ledvina S A, Niemann H B, Luhmann J G, McNutt R L, Ip W H, Haya V D L, Wodarg M, Wahlund J E, Anicich V G, Vuitton V 2006 Geophys. Res. Lett. 33 L07105Google Scholar

    [2]

    Dutuit O, Carrasco N, Thissen R, Vuitton V, Alcaraz C, Pernot P, Lavvas P 2013 Astrophys. J. Suppl. Ser. 204 20Google Scholar

    [3]

    Scherf M, Lammer H, Erkaev N V, Mandt K E, Thaller S E, Marty B 2020 Space Sci. Rev. 216 1Google Scholar

    [4]

    Bruna P J, Grein F 2008 J. Mol. Spectrosc. 250 75Google Scholar

    [5]

    Erkaev N V, Scherf M, Thaller S E, Lammer H, Mezentsev A V, Ivanov V A, Mandt K E 2021 Mon. Not. R. Astron. Soc. 500 2020Google Scholar

    [6]

    Opitom C, Hutsemékers D, Jehin E, Rousselot P, Pozuelos F J, Manfroid J, Moulane Y, Gillon M, Benkhaldoun Z 2019 Astron. Astrophys. 624 A64Google Scholar

    [7]

    Jenniskens P, Laux C O, Schaller E L 2004 Astrobiology 4 109Google Scholar

    [8]

    Abe S, Ebizuka N, Yano H, Watanabe J I, Borovička J 2005 Astrophys. J. 618 L141Google Scholar

    [9]

    Ho W C, Jäger W, Cramb D C, Ozier I, Gerry M C L 1992 J. Mol. Spectrosc. 153 692Google Scholar

    [10]

    Shi D H, Xing W, Sun J F, Zhu Z L, Liu Y F 2011 Comput. Theor. Chem. 966 44Google Scholar

    [11]

    Huffman R E, Larrabee J C, Tanaka Y 1964 Disc. Faraday Soc. 37 159Google Scholar

    [12]

    Bruna P J, Grein F 2004 J. Mol. Spectrosc. 227 67Google Scholar

    [13]

    Sinhal M 2021 Ph. D. Dissertation (Basel: University of Basel)

    [14]

    Fassbender M 1924 Z. Phys. 30 73

    [15]

    Childs W H J 1932 Proc. Roy. Soc. 137 641Google Scholar

    [16]

    Meinel A B 1950 Astrophys. J. 112 562Google Scholar

    [17]

    Dalby F W, Douglas A E 1951 Phys. Rev. 84 843Google Scholar

    [18]

    Lofthus A, Krupenie P H 1977 J. Phys. Chem Ref. Data 6 113Google Scholar

    [19]

    Dick K A, Benesch W, Crosswhite H M, Tilford S G, Gottscho R A, Field R W 1978 J. Mol. Spectrosc. 69 95Google Scholar

    [20]

    Gudeman C S, Saykally R J 1984 Annu. Rev. Phys. Chem. 35 387Google Scholar

    [21]

    Miller T A, Suzuki T, Hirota E 1984 J. Chem. Phys. 80 4671Google Scholar

    [22]

    Wu S H, Chen Y Q, Zhuang H, Yang X H, Bi Z Y, Ma L S, L Y Y 2001 J. Mol. Spectrosc. 209 133Google Scholar

    [23]

    Moon S Y, Choe W 2003 Spectrochim. Acta Part B 58 249Google Scholar

    [24]

    Zhang Y P, Deng L H, Zhang J, Chen Y Q 2015 Chin. J. Chem. Phys. 28 134Google Scholar

    [25]

    Nishiyama T, Taguchi M, Suzuki H, Dalin P, Ogawa Y, Brandstron U, Sakanoi T 2021 Earth Planets Space 73 30Google Scholar

    [26]

    Chauveau S, Perrin M Y, Riviere P, Soufiani A 2002 J. Quant. Spectrosc. Radiat. Transfer 72 503Google Scholar

    [27]

    Yan B, Feng W 2010 Chin. Phys. B 19 033303Google Scholar

    [28]

    Peyrou B, Chemartin L, Lalande P, Chéron B G, Riviere P, Perrin M Y, Soufiani A 2012 J. Phys. D:Appl. Phys. 45 455203Google Scholar

    [29]

    Liu H, Shi D H, Wang S, Sun J F, Zhu Z L 2014 J. Quant. Spectrosc. Radiat. Transfer 147 207Google Scholar

    [30]

    Qin Z, Zhao J M, Liu L H 2017 J. Quant. Spectrosc. Radiat. Transfer 202 2Google Scholar

    [31]

    Liang R H, Liu Y M, Li F Y 2021 Phys. Scr. 96 125402Google Scholar

    [32]

    Liang R H, Liu Y M, Li F Y 2021 Contrib. Plasma Phys. 61 e2021000366Google Scholar

    [33]

    Liang R H, Liu Y M, Li F Y 2021 J. Appl. Phys. 130 063303Google Scholar

    [34]

    马文, 靳奉涛, 袁建民 2007 物理学报 56 5709Google Scholar

    Ma W, Jin F T, Yuan J M 2007 Acta Phys. Sin. 56 5709Google Scholar

    [35]

    Lin X H, Liang G Y, Wang J G, Peng Y G, Shao B, Li R, Wu Y 2019 Chin. Phys. B 28 053101Google Scholar

    [36]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. B 29 023101Google Scholar

    [37]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. Lett. 37 123101Google Scholar

    [38]

    Li R, Liang G Y, Lin X H, Zhu Y H, Zhao S T, Wu Y 2019 Chin. Phys. B 28 043102Google Scholar

    [39]

    Xu X S, Dai A Q, Peng Y G, Wu Y, Wang J G 2018 J. Quant. Spectrosc. Radiat. Transfer 206 172Google Scholar

    [40]

    Slipher V M 1933 Mon. Not. R. Astron. Soc. 93 657Google Scholar

    [41]

    Feldman P D 1973 J. Geophys. Res. 78 2010Google Scholar

    [42]

    Langhoff S R, Bauschlicher C W 1988 J. Chem. Phys. 88 329Google Scholar

    [43]

    Langhoff S R, Bauschlicher C W, Partridge H 1987 J. Chem. Phys. 87 4716Google Scholar

    [44]

    Weck P F, Schweitzer A, Kirby K, Hauschildt P H, Stancil P C 2004 Astrophys J. 613 567Google Scholar

    [45]

    陈晨,赵国鹏,祁月盈,吴勇,王建国 2022 物理学报 71 143102Google Scholar

    Chen C, Zhao G P, Qi Y Y, Wu Y, Wang J G 2022 Acta Phys. Sin. 71 143102Google Scholar

    [46]

    Woon D E, Dunning T H. 1995 J. Chem. Phys. 103 4572Google Scholar

    [47]

    Werner H J and Meyer W 1980 J. Chem. Phys. 73 2342Google Scholar

    [48]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [49]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [50]

    Werner H J, Knowles P J, Manby F R, Schütz M, Celani P, Knizia G, Korona T, Lindh R, Mitrushenkov A, Rauhut G 2010 MOLPRO: a Package of ab initio Programs

    [51]

    Thulstrup E W, Andersen A 1975 J. Phys. B:Atom. Mol. Phys. 8 965Google Scholar

    [52]

    Zhang Y, Hanson D M 1986 Chem. Phys. Lett. 127 33Google Scholar

    [53]

    Berning A, Werner H J 1994 J. Chem. Phys. 100 1953Google Scholar

    [54]

    Li X Z, Paldus J 2000 Mol. Phys. 98 1185Google Scholar

    [55]

    Spelsberg D, Meyer W 2001 J. Chem. Phys. 115 6438Google Scholar

    [56]

    Bruna P J, Grein F 2008 J. Molecular Spectroscopy 250 75

    [57]

    Li X Z, Paldus J 2009 Phys. Chem. Chem. Phys. 11 5281Google Scholar

    [58]

    Langhoff S R, Bauschlicher Jr C W 1988 J. Chemical Physics 88 329

    [59]

    Bernath P F, Dalgarno A 1996 Phys. Today 49 94

  • [1] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl阴离子的光谱性质和跃迁性质. 物理学报, 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [2] 陈晨, 赵国鹏, 祁月盈, 吴勇, 王建国. 氮气分子X1Σ+g,a1Σu,a1Πgb1Πu电子态的不透明度. 物理学报, 2022, 71(14): 143102. doi: 10.7498/aps.71.20220043
    [3] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl-阴离子的光谱性质和跃迁性质. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211688
    [4] 魏长立, 廖浩, 罗太盛, 任银拴, 闫冰. Na2+离子较低电子态势能曲线和光谱常数的理论研究. 物理学报, 2018, 67(24): 243101. doi: 10.7498/aps.67.20181690
    [5] 王杰敏, 王希娟, 陶亚萍. 75As32S+和75As34S+离子的光谱常数与分子常数. 物理学报, 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [6] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. AlC分子 X4∑-和B4∑-电子态的光谱性质. 物理学报, 2013, 62(11): 113101. doi: 10.7498/aps.62.113101
    [7] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [8] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究. 物理学报, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [9] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究. 物理学报, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [10] 王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛. PH, PD和PT分子常数理论研究. 物理学报, 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [11] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究. 物理学报, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [12] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. SO+离子b4∑-态光谱常数和分子常数研究. 物理学报, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [13] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 物理学报, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [14] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [15] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [16] 王新强, 杨传路, 苏涛, 王美山. BH分子基态和激发态解析势能函数和光谱性质. 物理学报, 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [17] 施德恒, 刘玉芳, 孙金锋, 张金平, 朱遵略. 基态O和D原子的低能弹性碰撞及OD(X2Π)自由基的准确解析势与分子常数. 物理学报, 2009, 58(4): 2369-2375. doi: 10.7498/aps.58.2369
    [18] 施德恒, 张金平, 孙金锋, 刘玉芳, 朱遵略. 基态S和D原子的低能弹性碰撞及SD(X2Π)自由基的准确相互作用势与分子常数. 物理学报, 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [19] 张继彦, 杨家敏, 许 琰, 杨国洪, 颜 君, 孟广为, 丁耀南, 汪 艳. 辐射加热Al等离子体的吸收谱实验. 物理学报, 2008, 57(2): 985-989. doi: 10.7498/aps.57.985
    [20] 王藩侯, 陈敬平, 孟续军, 周显明, 李西军, 孙永盛, 经福谦. 冲击压缩产生的氩等离子体辐射不透明度研究. 物理学报, 2001, 50(7): 1308-1312. doi: 10.7498/aps.50.1308
  • 期刊类型引用(22)

    1. 田立良,池浩,党杰. 一种优化服务器电磁辐射性能的自动展频方法. 信息技术与信息化. 2023(05): 136-139 . 百度学术
    2. 孙会琴,王思飞,田铮. 孔阵腔体屏蔽效能BLT方程修正与拓展分析. 电光与控制. 2023(07): 100-105 . 百度学术
    3. 张晗,李常贤. 高频有损斜开孔腔体屏蔽效能研究. 微波学报. 2023(06): 12-17+34 . 百度学术
    4. 胡小龙,李常贤. 高速列车屏蔽线转移阻抗与屏蔽效能研究. 电子测量技术. 2022(05): 80-85 . 百度学术
    5. 张岩,田铮,王川川,杨清熙,王思飞. 双层腔体屏蔽效能随孔缝位置与数量变化规律研究. 电工技术学报. 2022(13): 3350-3360 . 百度学术
    6. 于海波,张茂强,张晓波,虞晓阳,熊杰,刘彬. 高集成电力电子设备外壳屏蔽效能评估. 安全与电磁兼容. 2021(01): 69-72+79 . 百度学术
    7. 公延飞,陈星彤,高超飞,孙剑. 一种快速预测有损腔体屏蔽效能和谐振模式的解析模型. 电工技术学报. 2021(08): 1569-1578 . 百度学术
    8. 叶志红,张杰,周健健,苟丹. 有耗介质层上多导体传输线的电磁耦合时域分析方法. 物理学报. 2020(06): 47-54 . 百度学术
    9. 马振洋,左晶,史春蕾,冯嘉诚,刘旭红. 机载电子设备屏蔽效能测试与优化. 航空学报. 2020(07): 226-233 . 百度学术
    10. 王金田,刘雪明,商宝莹,李志勇,穆晓彤. 一种计算任意形状孔缝平均电极化率密度的方法. 电子测量技术. 2019(03): 31-34 . 百度学术
    11. 王殿海,石成英,蔡星会,易昭湘. 有内置薄板腔体的HEMP屏蔽效能研究. 微波学报. 2019(01): 87-90 . 百度学术
    12. 白婉欣,李天乐,郭安琪,成睿琦,焦重庆. 平面波照射下无限大导体板上周期孔阵屏蔽效能的解析研究. 物理学报. 2019(10): 64-72 . 百度学术
    13. 阎芳,刘旭红,王鹏,马振洋,史春蕾,于新海,赵聪. 高强辐射场下不同孔阵的金属腔体屏蔽效能研究. 电光与控制. 2019(08): 90-94+100 . 百度学术
    14. 郝建红,公延飞,蒋璐行,范杰清. 内置电路板的复杂多腔体电磁串扰屏蔽效能的解析研究. 电工技术学报. 2018(03): 670-679 . 百度学术
    15. 郝建红,蒋璐行,范杰清,公延飞. 内置介质板的开孔箱体屏蔽效能电磁拓扑模型. 电工技术学报. 2017(09): 101-111 . 百度学术
    16. 陈珂,杜平安,任丹. 一种基于缝隙天线阻抗的带缝腔体谐振频率计算方法. 电子学报. 2017(01): 232-237 . 百度学术
    17. 高雪莲,马士杰,杨凯,李丹. 考虑高次模的孔缝腔体屏蔽效能计算方法. 高电压技术. 2017(10): 3344-3350 . 百度学术
    18. 刘宁,张如彬,金杰. 投弃式仪器数据传输信道时频响应求解方法. 电波科学学报. 2016(05): 1009-1015 . 百度学术
    19. 阚勇,闫丽萍,赵翔,周海京,刘强,黄卡玛. 基于电磁拓扑的多腔体屏蔽效能快速算法. 物理学报. 2016(03): 88-99 . 百度学术
    20. 张玉廷,李冉,高文军,吕争,张华. 等效导纳模型分析航天器VHF/UHF频段屏蔽效能. 宇航学报. 2016(11): 1392-1397 . 百度学术
    21. 陈珂,王丹丹,杜平安. 孔缝腔体电磁谐振特性的影响因素分析. 中国科技论文. 2016(20): 2307-2311 . 百度学术
    22. 罗静雯,杜平安,任丹,肖培. 基于BLT方程的双层腔体屏蔽效能计算方法. 强激光与粒子束. 2015(11): 166-171 . 百度学术

    其他类型引用(16)

计量
  • 文章访问数:  4903
  • PDF下载量:  77
  • 被引次数: 38
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-05-18
  • 上网日期:  2022-10-03
  • 刊出日期:  2022-10-05

/

返回文章
返回