搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低密度铝铁金等离子体辐射不透明度数据库

曾交龙 高城 袁建民

引用本文:
Citation:

低密度铝铁金等离子体辐射不透明度数据库

曾交龙, 高城, 袁建民

Data base for opacity of Alumnium, iron and gold plasmas

Zeng Jiaolong, Gao Cheng, Yuan Jianmin
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 等离子体不透明度在辐射输运和辐射流体力学研究中具有重要的应用,在实际应用中,这些参数主要依赖于理论研究获得,实验提供了对理论计算精度的检验。在细致能级模型的理论框架下,对铝、铁和金等离子体的辐射不透明度进行了系统的理论研究,建立了在密度0.001-0.1 g/cm3和温度1-300 eV范围内光谱分辨的辐射不透明度和Rosseland和Planck平均不透明度数据库。不透明度的理论研究涉及到特定等离子体条件下的大量量子态,在复杂的金等离子体条件下,量子态的数目可能以亿计,甚至达到万亿乃至更大,因而其精确的研究显然具有很大的挑战性。对于高Z的金等离子体,公开发表的不透明度数据非常少,本工作提供的数据库为高Z不透明度研究提供了参考。对中低Z的铝和铁等离子体,本课题组以前公开发表的工作很好地解释了实验结果,表明了理论方法的可靠性。本文与国际上ATOMIC程序得到的理论结果进行了比较,分析了两种方法得到结果的异同,大部分等离子体条件下,两者符合较好,对于有差异的部分,指出了差异的物理根源。
    Radiative opacity plays an important role in investigations on radiative transfer, radiation hydrodynamics and other related disciplines. In practical applications, these data are mainly obtained by theoretical calculations. The accuracy of the theories is checked by limited experiments. In the theoretical frame of detailed level accounting method, a systematic investigation is carried on spectrally resolved and Rosseland and Planck mean opacities of aluminum, iron, and gold plasmas under conditions in a density range of 0.001-0.1 g/cm3 and a temperature range of 1-300 eV. A data base is built based on these theoretical opacities. A huge number of quantum states are involved in the calculation of opacity, especially for high-Z gold plasmas. This poses a great challenge to obtain accurate opacity of gold plasmas. For such high-Z plasmas, there is a necessity to develop other codes such as unresolved transition array or even average atom model to fast obtain the opacity. Accurate opacity data are lacking very much for such high-Z plasmas and the data presented in this library represent an important reference for other less detailed opacity codes.
    For aluminum and iron plasmas, the opacities are compared with one of the most accurate code ATOMIC. It is found that a good agreement is obtained for most cases of plasma conditions. Yet discrepancies are still found at a few cases of plasma densities and temperatures, as demonstrated in Fig. S1 where there is an excellent agreement between the bound-free opacity obtained by our code and the ATOMIC. At photon energy around 850 eV, however, some strong lines of aluminum plasmas are found to be missing in Al plasmas in other codes, which will affect the radiative transfer in x-ray region. In our code, we avoid such issues by including all possible line absorption and photoionization channels. The present dataset should be helpful for the study of inertial confinement fusion, plasma physics and astrophysics.
  • [1]

    Hurricane O A, Patel P K, Betti, R, Froula D H, Regan S P, Slutz S A, Gomez M R, Sweeney M A 2023Rev. Mod. Phys. 95 025005

    [2]

    Davidson S J, Foster J M, Smith C C, Warburton K A, Rose S J 1988Appl. Phys. Lett. 52 847

    [3]

    Perry T S, Davidson S J, Serduke F J D, Bach D R, Smith C C, Foster J M, Doyas R J, Ward R A, Iglesias C A, Rogers F J, Abdallah J Jr, Stewart R E, Kilkenny J D, Lee R W 1991Phys. Rev. Lett. 67 3784

    [4]

    Qiang Y, Ye F, Lu J, Yan X S, Yang R H, Jiang S Q, Ning J M, Zhou L, Chen F X, Yang J L, Wang D M, Xu Z P, You H B, Zhang F Q, Li Z H, Wang G Q, Xiao D L, Wu Z Q, Meng S J, Huang X B, Xu Q, Zhou S T, Zhang D Y, Zhang S Q, Ren X D, Ji C, Li Y, Cai P T, Ren J, Chen S, Zhang H Y 2024Phys. Rev. E 110 065205

    [5]

    Zeng J L, Jin F T, Yuan J M 2001Chin. Phys. Lett. 18 924

    [6]

    Zeng J L, Jin F T, Yuan J M, Lu Q S, 2000Phys. Rev. E 62 7251

    [7]

    Zeng J L, Yuan J L, Lu Q S 2001Phys. Rev. E 64 066412

    [8]

    Zeng J L, Yuan J M 2002Phys. Rev. E. 66 016401

    [9]

    Jin F T, Zeng J L, Yuan J M 2004Phys. Plasmas 11 4318

    [10]

    Winhart G, Eidmann K, Iglesias C A, Bar-Shalom A 1996Phys. Rev. E 53 R1332

    [11]

    Springer PT, Fields D J, Wilson B G, Nash J K, Goldstein W H, Iglesias C A, Rogers F J, Swenson J K, Chen M H, Bar-Shalom A, Stewart R E 1992Phys. Rev. Lett. 69 3735

    [12]

    Bailey J E, Rochau G A, Iglesias C A, Abdallah, J Jr, MacFarlane J J, Golovkin I, Wang P, Mancini R C, Lake P W, Moore T C, Bump M, Garcia O, Mazevet S 2007Phys. Rev. Lett. 99 265002

    [13]

    Zhang J, Li H, Zhao Y, Xiong G, Yuan Z, Zhang H, Yang G, Yang J, Liu S, Jiang S, Ding Y, Zhang B, Zheng Z, Xu Y, Meng X, Yan J 2012Phys. Plasmas 19 113302

    [14]

    Jin F T, Zeng J L, Yuan J M 2003Phys. Rev. E 68 066401

    [15]

    Zeng J L, Jin F T, Zhao G, Yuan J M 2003Chin. Phys. Lett. 20 862

    [16]

    Gao C, Zeng J L 2008Phys. Rev. E 78 046407

    [17]

    Jin F T, Zeng J L, Yuan J M 2004Chin. J. Computation Phys. 21 121(in Chinese) [靳奉涛,曾交龙,袁建民2004计算物理21 121]

    [18]

    Bailey J E, Nagayama T, Loisel G P, Rochau G A, Blancard C, Colgan J, Cosse Ph, Faussurier G, Fontes C J, Gilleron F, Golovkin I E, Hansen S B, Iglesias C A, Kilcrease D P, MacFarlane J J, Mancini R C, Nahar S N, Orban C, Pain J-C, Pradhan A K, Sherrill M E, Wilson B G 2015Nature 517 56

    [19]

    Nagayama T, Bailey J E, Loisel G P, Dunham G S, Rochau G A, Blancard C, Colgan J, Cosse Ph, Faussurier G, Fontes C J, Gilleron F, Hansen S B, Iglesias C A, Golovkin I E, Kilcrease D P, MacFarlane J J, Mancini R C, More R M, Orban C, Pain J-C, Sherrill M E, Wilson B G 2019Phys. Rev. Lett. 122 235001

    [20]

    Eidmann K, Bar-Shalom A, Saemann A, Winhart G, 1998Europhys. Lett. 44 459

    [21]

    Zhang J Y, Xu Y, Yang J M, Yang G H, Li H, Yuan Z, Zhao Y, Xiong G, Bao L H, Huang C W, Wu Z Q, Yan J, Ding Y K, Zhang B H, Zheng Z J 2011Phys. Plasmas 18 113301

    [22]

    Zhang J, Yang G, Yang J, Ding Y, Zhang B, Zheng Z, Yan J 2007Phys. Plasmas 14 103301

    [23]

    Zeng J L, Zhao G, Yuan J M, 2006Chin. Phys. Lett. 23 660

    [24]

    Zeng J L, Yuan J M 2006Phys. Rev. E 74 025401R

    [25]

    Zeng J L, Yuan J M 2007Phys. Rev. E 76 026401

    [26]

    Zeng J L 2008J. Phys. B 41 125702

    [27]

    Gao C, Zeng J L, Jin F T, Yuan J M 2013High Energy Density Phys. 9 419

    [28]

    Zeng J L 2005Detailed term accounting investigation on opacity of aluminium plasmas (Changsha: National University of Defense Technology Press) (in Chinese) [曾交龙2005使用细致谱项模型研究铝等离子体的辐射不透明度(长沙:国防科技大学出版社)]

    [29]

    Zeng J L, Jin F T, Yuan J M 2006Front. Phys. China 1 468

    [30]

    Jin F T, Zeng J L, Yuan J M 2005Physics 34 820(in Chinese) [靳奉涛, 曾交龙,袁建民2005物理34 820]

    [31]

    Zeng J L, Yuan J M, Zhao Z X, Lu Q S 2001High power laser and particle 13 60(in Chinese) [曾交龙, 袁建民, 赵增秀, 陆启生2001强激光与粒子束13 60]

    [32]

    Iglesias C A, Rogers F J 1991Astrophys. J. 371 408

    [33]

    Seaton M J, Yan Y, Mihalas D, Pradhan A K 1994Mon. Not. R. Astron. Soc. 266 805

    [34]

    Hansen S B, Bauche J, Bauche-Arnoult C,Gu M F 2007High Energy Density Phys. 3 109

    [35]

    Porcherot Q, Pain J-C, Gilleron F,Blenski T A 2011High Energy Density Phys. 7 234

    [36]

    Blancard C, Cosse P, Faussurier G. 2012Astrophys. J. 745 10

    [37]

    Colgan J, Kilcreasea D P, Magee Jr N H, Armstronga G S J, Abdallah Jr J, Sherrill M E, Fontes C J, Zhang H L, Hakel P 2013High Energy Density Phys. 9 369

    [38]

    Xiong G, Qing B, Zhang Z Y, Jing L F, Zhao Y, Wei M X, Yang Y M, Hou L F, Huang C W, Zhu T, Song T M, Lv M, Zhao Y, Zhang Y X, Yang G H, Wu Z Q, Yan J, Zou Y M, Zhang J Y, Yang J M 2024Matters Radiation Extremes 9 047801

    [39]

    Qing B, Zhang Z, Wei M, Yang Y, Yang Z, Yang G, Zhao Y, Lv M, Xiong G, Hu Z, Zhang J, Yang J, Yan J, 2018Phys. Plasmas 25 023301

    [40]

    Gang X, Yang J M, Zhang J Y, Hu Z M, Zhao Y, Qing B, Yang G H, Wei M X, Yi R Q, Song T M, Li H, Yuan Z, Lv M, Meng X J, Xu Y, Wu Z Q, Yan J 2016Astrophys. J. 816 36

    [41]

    Gao C, Liu Y B, Yan G B, Yan J, Chen X Q, Hou Y, Jin F T, Wu J H, Zeng J L, Yuan J M 2023Acta Phys. Sin. 72 183101(in Chinese)[高城,刘彦鹏,严冠鹏, 闫杰,陈小棋,侯永,靳奉涛,吴建华,曾交龙,袁建民2023物理学报72 183101]

    [42]

    Li R, Lv H N, Sang J Q, Liu X H, Liang G Y, Wu Y 2024Chinese Phys. B 33 053101

    [43]

    Zeng J L, Li Y J, Hou Y, Yuan J M, 2023Phys. Rev. E 107 L033201

    [44]

    Huang Y H, Liang Z H, Zeng J L, Yuan J M, 2024Phys. Rev. E 109 045210

    [45]

    Liu P F, Gao C, Hou Y, Zeng J L, Yuan J M, 2018Commun. Phys. 1 95

    [46]

    Zeng J L, Li Y J, Yuan J M, 2021J. Quant. Spectrosc. Radiat. Transf. 272 107777

    [47]

    Zeng J L, Jiang X B, Gao C, Wu J H, Yuan J M, 2024Results Phys. 58 107522

    [48]

    Zeng J L, Ye C, Liu P F, Gao C, Li Y J, Yuan J M, 2022Int. J. Mol. Sci. 23 6033

    [49]

    Zeng J L, Gao C, Liu P F, Li Y J, Meng C S, Hou Y, Kang D D, Yuan J M 2022Sci. China-Phys. Mech. Astron. 65 233011

    [50]

    Gao C, Zeng J L, Li Y Q, Jin F T, Yuan J M 2013High Energy Density Phys. 9 583

  • [1] 安斯腰力吐, 王佟, 肖利丹, 刘迪, 张夏, 闫冰. CO+分子离子X2Σ+、A2Π和B2Σ+态的不透明度. 物理学报, doi: 10.7498/aps.74.20250380
    [2] 高城, 刘彦鹏, 严冠鹏, 闫杰, 陈小棋, 侯永, 靳奉涛, 吴建华, 曾交龙, 袁建民. 局域热平衡Sn等离子体极紫外辐射不透明度和发射谱的理论研究. 物理学报, doi: 10.7498/aps.72.20230455
    [3] 陈晨, 赵国鹏, 祁月盈, 吴勇, 王建国. 氮气分子${X^1}\Sigma _{\rm{g}}^ + ,{a^\prime }^1\Sigma _{\rm{u}}^ - ,{a^1}{\Pi _{\rm{g}}} \text{和} { b}^1\Pi_{\rm u} $电子态的不透明度. 物理学报, doi: 10.7498/aps.71.20220043
    [4] 陈晨, 赵国鹏, 祁月盈, 吴勇, 王建国. $ {\text{N}}_{2}^{+} $分子离子$ {{\text{X}}^{2}}{\Sigma}_{\text{g}}^{+} $, $ {{\text{A}}^{\text{2}}}{{\Pi}_{\text{u}}} $$ {{\text{B}}^{2}}{\Sigma}_{\text{u}}^{+} $态的不透明度. 物理学报, doi: 10.7498/aps.71.20220734
    [5] 余庚华, 颜辉, 高当丽, 赵朋义, 刘鸿, 朱晓玲, 杨维. 相对论多组态相互作用方法计算Mg+离子同位素位移. 物理学报, doi: 10.7498/aps.67.20171817
    [6] 周锐, 李传亮, 和小虎, 邱选兵, 孟慧艳, 李亚超, 赖云忠, 魏计林, 邓伦华. 基于ab initio计算的CF-离子低激发态光谱性质研究. 物理学报, doi: 10.7498/aps.66.023101
    [7] 熊庄, 汪振新, Naoum C. Bacalis. 基于改进变分法对原子激发态精确波函数的研究. 物理学报, doi: 10.7498/aps.63.053104
    [8] 高雪艳, 尤凯, 张晓美, 刘彦磊, 刘玉芳. 多参考组态相互作用方法研究BS+离子的势能曲线和光谱性质. 物理学报, doi: 10.7498/aps.62.233302
    [9] 张继彦, 杨家敏, 杨国洪, 丁耀南, 李军, 颜君, 吴泽清, 丁永坤, 张保汉, 郑志坚. 激光直接加热自背光法辐射不透明度测量方法探索. 物理学报, doi: 10.7498/aps.62.195201
    [10] 王瑞荣, 王伟, 方智恒, 安红海, 贾果, 谢志勇, 孟祥富. 激光冲击波压缩稠密铝辐射不透明度实验研究. 物理学报, doi: 10.7498/aps.62.125202
    [11] 董富通, 王菲鹿, 仲佳勇, 赵刚. Fe离子M壳层不可分辨跃迁系不透明度研究. 物理学报, doi: 10.7498/aps.61.163201
    [12] 李尊懋, 熊庄, 代丽丽. 几何活性原子态的计算. 物理学报, doi: 10.7498/aps.59.7824
    [13] 袁卫国, 戴长建, 靳 嵩, 赵洪英, 关 锋. Ba原子6pnd(J=1, 3)自电离光谱的实验研究. 物理学报, doi: 10.7498/aps.57.4076
    [14] 张继彦, 杨家敏, 许 琰, 杨国洪, 颜 君, 孟广为, 丁耀南, 汪 艳. 辐射加热Al等离子体的吸收谱实验. 物理学报, doi: 10.7498/aps.57.985
    [15] 马 文, 靳奉涛, 袁建民. 平均原子模型中谱线位置偏移对辐射不透明度的影响. 物理学报, doi: 10.7498/aps.56.5709
    [16] 万建杰, 颉录有, 董晨钟, 蒋 军, 颜 君. 类镍等电子系列离子M1,M2,E2禁戒跃迁特性的理论研究. 物理学报, doi: 10.7498/aps.56.152
    [17] 姜旻昊, 孟续军. 用Hartree-Fock-Slater-Boltzmann-Saha模型研究等离子体细致组态原子结构及其状态方程. 物理学报, doi: 10.7498/aps.54.587
    [18] 齐静波, 陈重阳, 王炎森. 类钠离子的电子碰撞电离截面. 物理学报, doi: 10.7498/aps.50.1475
    [19] 王藩侯, 陈敬平, 孟续军, 周显明, 李西军, 孙永盛, 经福谦. 冲击压缩产生的氩等离子体辐射不透明度研究. 物理学报, doi: 10.7498/aps.50.1308
    [20] 滕华国, 沈百飞, 张文琦, 徐至展. 组态相互作用效应对类钠铜离子自电离速率和分支比的影响. 物理学报, doi: 10.7498/aps.43.205
计量
  • 文章访问数:  155
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-17

/

返回文章
返回