搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ab initio计算的CF-离子低激发态光谱性质研究

周锐 李传亮 和小虎 邱选兵 孟慧艳 李亚超 赖云忠 魏计林 邓伦华

引用本文:
Citation:

基于ab initio计算的CF-离子低激发态光谱性质研究

周锐, 李传亮, 和小虎, 邱选兵, 孟慧艳, 李亚超, 赖云忠, 魏计林, 邓伦华

Spectroscopic properties of low-lying excited electronic states for CF- anion based on ab initio calculation

Zhou Rui, Li Chuan-Liang, He Xiao-Hu, Qiu Xuan-Bing, Meng Hui-Yan, Li Ya-Chao, Lai Yun-Zhong, Wei Ji-Lin, Deng Lun-Hua
PDF
导出引用
  • 基于相关一致基组aug-cc-pV5Z,采用高精度的内收缩多参考组态相互作用方法计算了CF-离子两个最低解离极限C(3P2)+F-(1S0)和C(1D2)+F-(1S0)对应的5个Λ-S态(X3Σ-,a1Δ,b1Σ+,A3Π和c31Π)的势能曲线.计算中考虑了Davidson修正和标量相对论修正以提高数据的可靠性.根据Λ-S态的势能曲线,求解径向薛定谔方程得到振转能级,通过拟合获得了这些电子态的光谱常数.此外,研究了5个Λ-S态的电偶极矩随核间距变化的曲线,分析了电子态的组态变化对电偶极矩的影响.计算了A3Π-X3Σ-的跃迁偶极矩和Franck-Condon因子,获得了A3Π的5个最低振动能级的辐射寿命,分析了两个电子态之间的跃迁特性,并给出了振子强度.最后,研究了A3Π态的预解离机理,并计算得到了高振动能级的解离寿命.
    CF- anion is very important for collisional ionization reactions, electron transfer from Rydberg atoms and electron attachment. Potential energy curves (PECs) of five low-lying excited electronic states, X3Σ-, a1Δ, b1Σ+, A3Π and c31Π of CF-, are calculated by using the internally contracted multireference configuration interaction (icMRCI) approach. Ro-vibrational levels of these electronic states are derived through solving the radial Schrödinger ro-vibrational equation, and then the molecular parameters are obtained by fitting. Our results for X3Σ- agree well with those in the references. We compute the electronic dipole moments (EDMs) of these states with different bound lengths, and analyze the relationship between the electronic configurations and EDMs. The electronic transition dipole moment matrix elements, Franck-Condon factors and oscillator strengths f00 of A3Π-X3Σ- are evaluated, and radiative lifetimes of five lowest vibrational levels of A3Π state are derived. Finally the predissociation mechanism of A3Π state is discussed in detail, and the dissociation lifetimes of high vibrational levels are obtained.
      通信作者: 李传亮, clli@tyust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11504256)、中国科学院时间频率基准重点实验室开放基金、精密光谱科学与技术国家重点实验室开放课题、山西省高等学校科技创新项目(批准号:2014146,2015166)和晋城市科技攻关项目(批准号:1201501004-22)资助的课题.
      Corresponding author: Li Chuan-Liang, clli@tyust.edu.cn
    • Funds: Project is supported by the National Natural Science Foundation of China (Grant No. 11504256), the Open Funds of the Key Laboratory of Time and Frequency Primary Standards and the State Key Laboratory of Precision Spectroscopy, China, the Technological Innovation Programs of Higher Education Institutions in Shanxi, China (Grant Nos. 2014146, 2015166), and the Jincheng Programs for Science and Technology, China (Grant No. 1201501004-22).
    [1]

    Morino I, Yamada K M T, Belov S P, Winnewisser G 2000 Astrophys. J. 532 377

    [2]

    Neufeld D A, Schilke P, Menten K M, Wolfire M G, Black J H, Schuller F, Mller H S P, Thorwirth S, Gsten R, Philipp S 2006 Astron. Astrophys. 454 37

    [3]

    Guzmán V, Pety J, Gratier P, Goicoechea J R, Gerin M, Roueff E, Teyssier D 2012 Astron. Astrophys. 543 1

    [4]

    Reid C J 1996 Chem. Phys. 210 501

    [5]

    Coburn J W 1982 Plasma Chem. Plasma Proc. 2 1

    [6]

    Booth J P, Hancock G, Perry N D 1987 Appl. Phys. Lett. 50 318

    [7]

    Faber K T, Malloy K J 1992 Boston:Academic Press 37 79

    [8]

    Miyata K, Hori M, Goto T 1996 J. Vac. Sci. Technol. A 14 2343

    [9]

    Georgieva V, Bogaerts A, Gijbels R 2003 J. Appl. Phys. 94 3748

    [10]

    MorrisR A, Viggiano A A, Paulson J F 1994 J. Chem. Phys. 100 1767

    [11]

    Xie Y M, Henry F, Schaefer Ⅲ 1994 J. Chem. Phys. 101 10191

    [12]

    Hiraoka K, Mochizuki N, Wada A, Okada H, Ichikawa T, Asakawa D, Yazawa I 2008 Int. J. Mass Spectrom. 272 22

    [13]

    MorrisR A 1992 J. Chern. Phys. 97 2372

    [14]

    Thynne J C J, Macneil K A G, Mass I J 1970 Spectry Ion. Phys. 5 329

    [15]

    O'Hare P A G, Wahl A C 1971 J. Chem. Phys. 5 666

    [16]

    Gutsev G L, Ziegler A 1991 J. Phys. Chem. 95 7220

    [17]

    Gutsev G L 1992 Chem. Phys. 163 59

    [18]

    Rodriquez C F, Hopkinson A C 1993 J. Phys. Chem. 97 849

    [19]

    Ricca A 1999 J. Phys. Chem. A 103 1876

    [20]

    Rendell A P, Bauschlicher Jr C W, Langhoff S R 1989 Chem. Phys. Lett. 163 354

    [21]

    Petsalakis I D, Theodorakopoulos G 2011 Chem. Phys. Lett. 508 17

    [22]

    Dyke J M, Hooper N, Morris A 2001 J. Electron Spectrosc. Relat. Phenom. 119 49

    [23]

    Sandoval L, Amero J M, Vazquez G J, Palma A 2014 J. Mol. Model. 20 2300

    [24]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2016 Acta Phys. Sin. 65 033102 (in Chinese)[邢伟, 刘慧, 施德恒, 孙金峰, 朱遵略2016物理学报65 033102]

    [25]

    Li C, Deng L, Zhang Y, Wu L, Yang X, Chen Y 2011 J. Phys. Chem. A 115 2978

    [26]

    Li R, Wei C L, Sun Q X, Sun E P, Xu H F, Yan B 2013 J. Phys. Chem. A 117 2373

    [27]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [28]

    Richartz A, Buenker R J 1978 Chem. Phys. 28 305

    [29]

    Reiher M, Wolf A 2004 J.Chem. Phys. 121 2037

    [30]

    Reiher M, Wolf A 2004 J. Chem.Phys. 121 10945

    [31]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [32]

    Knowles, Werner H J 1988 Chem. Phys. Lett. 145 514

    [33]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823

    [34]

    Le Roy R J 2007 LEVEL 8.0:A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (University of Waterloo Chemical-Physics Research Report CP-663)

    [35]

    Zou W L, Liu W J 2005 J. Comput. Chem. 26 106

    [36]

    Chabalowski C F, Peyerimhoff S D, Buenker R J 1983 Chem. Phys. 81 57

    [37]

    Herzberg G (translated by Wang D C) 1983 Molecular Spectra and Molecular Structure (Vol. 1) (Beijing:Science Press) pp321-325(in Chinese)[赫兹堡G著(王鼎昌译) 1983分子光谱与分子结构(第1卷) (北京:科学出版社)第321–325页

    [38]

    Lefebvre-Brion H, Field R W 2004 The Spectra and Dynamics of Diatomic Molecules (New York:Academic Press) pp161-164

    [39]

    Yao H B, Zheng Y J 2011 Acta Phys. Sin. 60 128201 (in Chinese)[姚洪斌, 郑雨军2011物理学报60 128201]

    [40]

    Liu X J, Miao F J, Li R, Zhang C H 2015 Acta Phys. Sin. 64 123101 (in Chinese)[刘晓军, 苗凤娟, 李瑞, 张存华2015物理学报64 123101]

    [41]

    Banerjee S, Montgomery J A, Byrd J N 2012 Chem. Phys. Lett. 542 138

  • [1]

    Morino I, Yamada K M T, Belov S P, Winnewisser G 2000 Astrophys. J. 532 377

    [2]

    Neufeld D A, Schilke P, Menten K M, Wolfire M G, Black J H, Schuller F, Mller H S P, Thorwirth S, Gsten R, Philipp S 2006 Astron. Astrophys. 454 37

    [3]

    Guzmán V, Pety J, Gratier P, Goicoechea J R, Gerin M, Roueff E, Teyssier D 2012 Astron. Astrophys. 543 1

    [4]

    Reid C J 1996 Chem. Phys. 210 501

    [5]

    Coburn J W 1982 Plasma Chem. Plasma Proc. 2 1

    [6]

    Booth J P, Hancock G, Perry N D 1987 Appl. Phys. Lett. 50 318

    [7]

    Faber K T, Malloy K J 1992 Boston:Academic Press 37 79

    [8]

    Miyata K, Hori M, Goto T 1996 J. Vac. Sci. Technol. A 14 2343

    [9]

    Georgieva V, Bogaerts A, Gijbels R 2003 J. Appl. Phys. 94 3748

    [10]

    MorrisR A, Viggiano A A, Paulson J F 1994 J. Chem. Phys. 100 1767

    [11]

    Xie Y M, Henry F, Schaefer Ⅲ 1994 J. Chem. Phys. 101 10191

    [12]

    Hiraoka K, Mochizuki N, Wada A, Okada H, Ichikawa T, Asakawa D, Yazawa I 2008 Int. J. Mass Spectrom. 272 22

    [13]

    MorrisR A 1992 J. Chern. Phys. 97 2372

    [14]

    Thynne J C J, Macneil K A G, Mass I J 1970 Spectry Ion. Phys. 5 329

    [15]

    O'Hare P A G, Wahl A C 1971 J. Chem. Phys. 5 666

    [16]

    Gutsev G L, Ziegler A 1991 J. Phys. Chem. 95 7220

    [17]

    Gutsev G L 1992 Chem. Phys. 163 59

    [18]

    Rodriquez C F, Hopkinson A C 1993 J. Phys. Chem. 97 849

    [19]

    Ricca A 1999 J. Phys. Chem. A 103 1876

    [20]

    Rendell A P, Bauschlicher Jr C W, Langhoff S R 1989 Chem. Phys. Lett. 163 354

    [21]

    Petsalakis I D, Theodorakopoulos G 2011 Chem. Phys. Lett. 508 17

    [22]

    Dyke J M, Hooper N, Morris A 2001 J. Electron Spectrosc. Relat. Phenom. 119 49

    [23]

    Sandoval L, Amero J M, Vazquez G J, Palma A 2014 J. Mol. Model. 20 2300

    [24]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2016 Acta Phys. Sin. 65 033102 (in Chinese)[邢伟, 刘慧, 施德恒, 孙金峰, 朱遵略2016物理学报65 033102]

    [25]

    Li C, Deng L, Zhang Y, Wu L, Yang X, Chen Y 2011 J. Phys. Chem. A 115 2978

    [26]

    Li R, Wei C L, Sun Q X, Sun E P, Xu H F, Yan B 2013 J. Phys. Chem. A 117 2373

    [27]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [28]

    Richartz A, Buenker R J 1978 Chem. Phys. 28 305

    [29]

    Reiher M, Wolf A 2004 J.Chem. Phys. 121 2037

    [30]

    Reiher M, Wolf A 2004 J. Chem.Phys. 121 10945

    [31]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [32]

    Knowles, Werner H J 1988 Chem. Phys. Lett. 145 514

    [33]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823

    [34]

    Le Roy R J 2007 LEVEL 8.0:A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (University of Waterloo Chemical-Physics Research Report CP-663)

    [35]

    Zou W L, Liu W J 2005 J. Comput. Chem. 26 106

    [36]

    Chabalowski C F, Peyerimhoff S D, Buenker R J 1983 Chem. Phys. 81 57

    [37]

    Herzberg G (translated by Wang D C) 1983 Molecular Spectra and Molecular Structure (Vol. 1) (Beijing:Science Press) pp321-325(in Chinese)[赫兹堡G著(王鼎昌译) 1983分子光谱与分子结构(第1卷) (北京:科学出版社)第321–325页

    [38]

    Lefebvre-Brion H, Field R W 2004 The Spectra and Dynamics of Diatomic Molecules (New York:Academic Press) pp161-164

    [39]

    Yao H B, Zheng Y J 2011 Acta Phys. Sin. 60 128201 (in Chinese)[姚洪斌, 郑雨军2011物理学报60 128201]

    [40]

    Liu X J, Miao F J, Li R, Zhang C H 2015 Acta Phys. Sin. 64 123101 (in Chinese)[刘晓军, 苗凤娟, 李瑞, 张存华2015物理学报64 123101]

    [41]

    Banerjee S, Montgomery J A, Byrd J N 2012 Chem. Phys. Lett. 542 138

计量
  • 文章访问数:  3145
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-01
  • 修回日期:  2016-10-23
  • 刊出日期:  2017-01-20

基于ab initio计算的CF-离子低激发态光谱性质研究

  • 1. 太原科技大学应用科学学院, 太原 030024;
  • 2. 华东师范大学, 精密光谱科学与技术国家重点实验室, 上海 200062
  • 通信作者: 李传亮, clli@tyust.edu.cn
    基金项目: 国家自然科学基金(批准号:11504256)、中国科学院时间频率基准重点实验室开放基金、精密光谱科学与技术国家重点实验室开放课题、山西省高等学校科技创新项目(批准号:2014146,2015166)和晋城市科技攻关项目(批准号:1201501004-22)资助的课题.

摘要: 基于相关一致基组aug-cc-pV5Z,采用高精度的内收缩多参考组态相互作用方法计算了CF-离子两个最低解离极限C(3P2)+F-(1S0)和C(1D2)+F-(1S0)对应的5个Λ-S态(X3Σ-,a1Δ,b1Σ+,A3Π和c31Π)的势能曲线.计算中考虑了Davidson修正和标量相对论修正以提高数据的可靠性.根据Λ-S态的势能曲线,求解径向薛定谔方程得到振转能级,通过拟合获得了这些电子态的光谱常数.此外,研究了5个Λ-S态的电偶极矩随核间距变化的曲线,分析了电子态的组态变化对电偶极矩的影响.计算了A3Π-X3Σ-的跃迁偶极矩和Franck-Condon因子,获得了A3Π的5个最低振动能级的辐射寿命,分析了两个电子态之间的跃迁特性,并给出了振子强度.最后,研究了A3Π态的预解离机理,并计算得到了高振动能级的解离寿命.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回