搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集合背景误差方差中小波阈值去噪方法研究及试验

刘柏年 皇群博 张卫民 任开军 曹小群 赵军

引用本文:
Citation:

集合背景误差方差中小波阈值去噪方法研究及试验

刘柏年, 皇群博, 张卫民, 任开军, 曹小群, 赵军

Invesitgation and experiments of wavelet thresholding in ensemble-based background error variance

Liu Bai-Nian, Huang Qun-Bo, Zhang Wei-Min, Ren Kai-Jun, Cao Xiao-Qun, Zhao Jun
PDF
导出引用
  • 背景误差方差的集合估计值中带有大量采样噪声,在应用之前需进行降噪处理.区别于一般的高斯白噪声,采样噪声具有空间和尺度相关性,部分尺度上的噪声能级远大于平均能级.本文针对背景误差方差中采样噪声的特征,引入小波阈值去噪方法,并根据截断余项的小波系数分布特征发展了一种计算代价很小,能自动修正阈值的算法.一维理想试验结果表明,该方法能滤除大量采样噪声,提高背景误差方差估计值的精度.相对于原来的小波阈值方法,修正阈值后减少了因部分尺度上噪声能级过大导致的残差,去噪后的RMSE减少了13.28%.将该方法应用在实际的集合资料同化系统中,结果表明,小波阈值方法优于谱方法,阈值修正后能在不影响信号的前提下增大小波去噪强度.
    A large amount of sampling noise which exists in the ensemble-based background error variance need be reduced effectively before being applied to operational data assimilation system.Unlike the typical Gaussian white noise,the sampling noise is scaled and space-dependent,thus making its energy level on some scales much larger than the average. Although previous denoising methods such as spectral filtering or wavelet thresholding have been successfully used for denoising Gaussian white noise,they are no longer applicable for dealing with this kind of sampling noise.One can use a different threshold for each scale,but it will bring a big error especially on larger scales.Another modified method is to use a global multiplicative factor,α, to adjust the filtering strength based on the optimization of trade-off between removal of the noise and averaging of the useful signal.However,tuning α is not so easy,especially in real operational numerical weather prediction context.It motivates us to develop a new nearly cost-free filter whose threshold can be automatically calculated.#br#According to the characteristics of sampling noise in background error variance,a heterogeneous filtering method similar to wavelet threshold technology is employed.The threshold,TA,determined by iterative algorithm is used to estimate the truncated remainder whose norm is smaller than TA.The standard deviation of truncated remainder term is regard as first guess of sampling noise.Non-Guassian term of sampling noise,whose coefficient modulus is above TA,is regarded as a small probability event.In order to incorporate such a coefficient into the domain of[-T,T],a semi-empirical formula is used to calculate and approach the ideal threshold.#br#According to the characteristics of sampling noise in background error variance,a heterogeneous filtering method similar to wavelet threshold technology is employed.The threshold,TA,determined by iterative algorithm is used to estimate the truncated remainder whose norm is smaller than TA.The standard deviation of truncated remainder term is regard as first guess of sampling noise.Non-Guassian term of sampling noise,whose coefficient modulus is above TA,is regarded as a small probability event.In order to incorporate such a coefficient into the domain of[-T,T],a semi-empirical formula is used to calculate and approach the ideal threshold.#br#A new nearly cost-free filter is proposed to reduce the scale and space-dependent sampling noise in ensemble-based background error variance.It is able to remove most of the sampling noises,while extracting the signal of interest. Compared with those of primal wavelet filter and spectral filter,the performance and efficiency of proposed method are improved in 1D framework and real data assimilation system experiments.Further work should focus on the sphere wavelets,which is appropriate for analysing and reconstructing the signals on the sphere in global spectral models.
      通信作者: 刘柏年, bnliu@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号:41375113,41475094,41305101,41605070)资助的课题.
      Corresponding author: Liu Bai-Nian, bnliu@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41375113, 41475094, 41305101, 41605070).
    [1]

    Zhang W M, Cao X Q, Song J Q 2012 Acta Phys. Sin. 61 249202(in Chinese)[张卫民, 曹小群, 宋君强2012物理学报61 249202]

    [2]

    Wang S C, LI Y, Zhang W M, Zhao J, Cao X Q 2011 Acta Phys. Sin. 60 099203(in Chinese)[王舒畅, 李毅, 张卫民, 赵军, 曹小群2011物理学报60 099203]

    [3]

    Laroche S, Gauthier G 1998 Tellus Ser. A 50 557

    [4]

    Derber J, Bouttier F 1999 Tellus Ser. A 51 195

    [5]

    Buizza R, Houtekamer P L, Pellerin G, Toth Z, Zhu Y J, Wei M Z 2005 Mon. Weather Rev. 133 1076

    [6]

    Houtekamer P L, Mitchell H L 1998 Mon. Weather Rev. 126 3

    [7]

    Evensen G 1994 J. Geophys. Res. 99 10143

    [8]

    Bonavita M, Raynaud L, Isaksen L 2011 Q. J. R. Meteorol. Soc. 137 423

    [9]

    Berre L, Varella H, Desroziers G 2015 Q. J. R. Meteorol. Soc. 141 2803

    [10]

    Raynaud L, Berre L, Desroziers G 2009 Q. J. R. Meteorol. Soc. 135 1177

    [11]

    Pereira M B, Berre L 2006 Mon. Weather Rev.134 2466

    [12]

    Raynaud L, Berre L, Desroziers G 2008 Q. J. R. Meteorol. Soc. 134 1003

    [13]

    Wiener N 1949 Extrapolation, Interpolation, and Smoothing of Stationary Time Series (Cambridge:Massachusetts Institute of Technology) pp86-90

    [14]

    Bonavita M, Isaksen L, Hólm E 2012 Q. J. R. Meteorol. Soc. 138 1540

    [15]

    Liu B N, Zhang W M, Cao X Q, Zhao Y L, Huang Q B 2015 China J. Geophys. 58 1526(in Chinese)[刘柏年, 张卫民, 曹小群, 赵延来, 皇群博, 罗雨2015地球物理学报58 1526]

    [16]

    Donoho D L, Johnstone J M 1994 Biometrical81 425

    [17]

    Parrish D F, Derber J C 1992 Mon. Weather Rev.120 1747

    [18]

    Fisher M 2003 Proceedings ECMWF Seminar on "Recent Developments in Data Assimilation for Atmosphere and Ocean" Reading, September 8-12, 2003 p45

    [19]

    Isaksen L, Fisher M, Berner J 2006 ECMWF Tech. Memo. 492

    [20]

    Moore S, Wood S, Davies P 1998 Annals of Statistics 26 1

    [21]

    Daley R 1993 Atmospheric Data Analysis1993(Cambridge:Cambridge University Press) pp46-50

    [22]

    Azzalini A, Farge M, Schneider K 2005 Appl. Comput. Harmon. Anal. 18 177

    [23]

    Yen R N V, Farge M, Schneider K 2012 Physica D Nonlinear Phenomena 241 186

    [24]

    Pannekoucke O, Raynaud L, Farge M 2014 Q. J. R. Meteorol. Soc. 140 316

    [25]

    Zhang W M, Liu B N, Cao X Q, Zhao Y L, Zhu M B, Zhao W J 2016 Acta Meteorol Sin. 74 410(in Chinese)[张卫民, 刘柏年, 曹小群, 赵延来, 朱孟斌, 赵文静2016气象学报74 410]

  • [1]

    Zhang W M, Cao X Q, Song J Q 2012 Acta Phys. Sin. 61 249202(in Chinese)[张卫民, 曹小群, 宋君强2012物理学报61 249202]

    [2]

    Wang S C, LI Y, Zhang W M, Zhao J, Cao X Q 2011 Acta Phys. Sin. 60 099203(in Chinese)[王舒畅, 李毅, 张卫民, 赵军, 曹小群2011物理学报60 099203]

    [3]

    Laroche S, Gauthier G 1998 Tellus Ser. A 50 557

    [4]

    Derber J, Bouttier F 1999 Tellus Ser. A 51 195

    [5]

    Buizza R, Houtekamer P L, Pellerin G, Toth Z, Zhu Y J, Wei M Z 2005 Mon. Weather Rev. 133 1076

    [6]

    Houtekamer P L, Mitchell H L 1998 Mon. Weather Rev. 126 3

    [7]

    Evensen G 1994 J. Geophys. Res. 99 10143

    [8]

    Bonavita M, Raynaud L, Isaksen L 2011 Q. J. R. Meteorol. Soc. 137 423

    [9]

    Berre L, Varella H, Desroziers G 2015 Q. J. R. Meteorol. Soc. 141 2803

    [10]

    Raynaud L, Berre L, Desroziers G 2009 Q. J. R. Meteorol. Soc. 135 1177

    [11]

    Pereira M B, Berre L 2006 Mon. Weather Rev.134 2466

    [12]

    Raynaud L, Berre L, Desroziers G 2008 Q. J. R. Meteorol. Soc. 134 1003

    [13]

    Wiener N 1949 Extrapolation, Interpolation, and Smoothing of Stationary Time Series (Cambridge:Massachusetts Institute of Technology) pp86-90

    [14]

    Bonavita M, Isaksen L, Hólm E 2012 Q. J. R. Meteorol. Soc. 138 1540

    [15]

    Liu B N, Zhang W M, Cao X Q, Zhao Y L, Huang Q B 2015 China J. Geophys. 58 1526(in Chinese)[刘柏年, 张卫民, 曹小群, 赵延来, 皇群博, 罗雨2015地球物理学报58 1526]

    [16]

    Donoho D L, Johnstone J M 1994 Biometrical81 425

    [17]

    Parrish D F, Derber J C 1992 Mon. Weather Rev.120 1747

    [18]

    Fisher M 2003 Proceedings ECMWF Seminar on "Recent Developments in Data Assimilation for Atmosphere and Ocean" Reading, September 8-12, 2003 p45

    [19]

    Isaksen L, Fisher M, Berner J 2006 ECMWF Tech. Memo. 492

    [20]

    Moore S, Wood S, Davies P 1998 Annals of Statistics 26 1

    [21]

    Daley R 1993 Atmospheric Data Analysis1993(Cambridge:Cambridge University Press) pp46-50

    [22]

    Azzalini A, Farge M, Schneider K 2005 Appl. Comput. Harmon. Anal. 18 177

    [23]

    Yen R N V, Farge M, Schneider K 2012 Physica D Nonlinear Phenomena 241 186

    [24]

    Pannekoucke O, Raynaud L, Farge M 2014 Q. J. R. Meteorol. Soc. 140 316

    [25]

    Zhang W M, Liu B N, Cao X Q, Zhao Y L, Zhu M B, Zhao W J 2016 Acta Meteorol Sin. 74 410(in Chinese)[张卫民, 刘柏年, 曹小群, 赵延来, 朱孟斌, 赵文静2016气象学报74 410]

  • [1] 汪书潮, 苏秀琴, 朱文华, 陈松懋, 张振扬, 徐伟豪, 王定杰. 基于弹性变分模态提取的时间相关单光子计数信号去噪. 物理学报, 2021, 70(17): 174304. doi: 10.7498/aps.70.20210149
    [2] 李静和, 何展翔, 杨俊, 孟淑君, 李文杰, 廖小倩. 曲波域统计量自适应阈值探地雷达数据去噪技术. 物理学报, 2019, 68(9): 090501. doi: 10.7498/aps.68.20182061
    [3] 王梦蛟, 周泽权, 李志军, 曾以成. 混沌信号自适应协同滤波去噪. 物理学报, 2018, 67(6): 060501. doi: 10.7498/aps.67.20172470
    [4] 牛明生, 王贵师. 基于可调谐二极管激光技术利用小波去噪在2.008 μm波段对δ13CO2的研究(已撤稿). 物理学报, 2017, 66(2): 024202. doi: 10.7498/aps.66.024202
    [5] 汪祥莉, 王斌, 王文波, 喻敏. 混沌背景下非平稳谐波信号的自适应同步挤压小波变换提取. 物理学报, 2016, 65(20): 200202. doi: 10.7498/aps.65.200202
    [6] 杜文辽, 陶建峰, 巩晓赟, 贡亮, 刘成良. 基于双树复小波变换的非平稳时间序列去趋势波动分析方法. 物理学报, 2016, 65(9): 090502. doi: 10.7498/aps.65.090502
    [7] 周先春, 汪美玲, 周林锋, 吴琴. 基于Demons算法改进的图像去噪模型研究. 物理学报, 2015, 64(2): 024205. doi: 10.7498/aps.64.024205
    [8] 周先春, 汪美玲, 石兰芳, 周林锋. 基于小波与重调和方程的扩散去噪模型的研究. 物理学报, 2015, 64(6): 064203. doi: 10.7498/aps.64.064203
    [9] 张玉燕, 周航, 闫美素. 基于经验模态分解的自混合干涉相位提取方法研究. 物理学报, 2015, 64(5): 054203. doi: 10.7498/aps.64.054203
    [10] 王梦蛟, 吴中堂, 冯久超. 一种参数优化的混沌信号自适应去噪算法. 物理学报, 2015, 64(4): 040503. doi: 10.7498/aps.64.040503
    [11] 李广明, 吕善翔. 混沌信号的压缩感知去噪. 物理学报, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [12] 吴祝慧, 韩月琪, 钟中, 杜华栋, 王云峰. 基于区域逐步分析的集合变分资料同化方法. 物理学报, 2014, 63(7): 079201. doi: 10.7498/aps.63.079201
    [13] 陈晓, 汪陈龙. 基于赛利斯模型和分数阶微分的兰姆波信号消噪. 物理学报, 2014, 63(18): 184301. doi: 10.7498/aps.63.184301
    [14] 吕善翔, 冯久超. 一种混沌映射的相空间去噪方法. 物理学报, 2013, 62(23): 230503. doi: 10.7498/aps.62.230503
    [15] 钟剑, 费建芳, 黄思训, 黄小刚, 程小平. 多参数背景场误差模型在散射计资料台风风场反演中的应用. 物理学报, 2013, 62(15): 159302. doi: 10.7498/aps.62.159302
    [16] 高国荣, 刘艳萍, 潘琼. 基于小波域可导阈值函数与自适应阈值的脉冲星信号消噪. 物理学报, 2012, 61(13): 139701. doi: 10.7498/aps.61.139701
    [17] 谢映海, 杨维, 张玉. 离散空间上的最小能量框架及其在矩形脉冲信号去噪中的应用研究. 物理学报, 2010, 59(11): 8255-8263. doi: 10.7498/aps.59.8255
    [18] 曹小群, 黄思训, 杜华栋. 变分同化中水平误差函数的正交小波模拟新方法. 物理学报, 2008, 57(3): 1984-1989. doi: 10.7498/aps.57.1984
    [19] 苟学强, 张义军, 董万胜. 基于小波的雷暴强放电前地面电场的多重分形分析. 物理学报, 2006, 55(2): 957-961. doi: 10.7498/aps.55.957
    [20] 邓玉强, 张志刚, 柴 路, 王清月. 小波变换重建超短脉冲光谱相位的误差分析. 物理学报, 2005, 54(9): 4176-4181. doi: 10.7498/aps.54.4176
计量
  • 文章访问数:  5953
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-26
  • 修回日期:  2016-10-20
  • 刊出日期:  2017-01-20

/

返回文章
返回