亮点文章
摘要 +
超快扫描电子显微镜将泵浦探测技术与显微成像相结合, 能够实现高时空分辨率下光诱导表面电荷动力学的可视化研究, 对于半导体表面态以及光电器件的高分辨检测具有非常重要的意义. 本文基于首台全国产化超快扫描电子显微镜的研制工作, 阐述了将热发射电子枪改造成光发射电子枪后的参数化设计, 定量分析了偏压, 阴极、韦氏极、阳极的空间位置与交叉点位置、大小、发散角的依赖关系. 分析结果显示, 当韦氏极与阳极位置从8 mm调整到23 mm后, 通过将灯丝深度从0.65 mm调整至0.45 mm, 配合偏压调节可以实现热发射高分辨成像、低工作电压以及光发射的正常使用. 此外, 也分析了反射镜分布对电子光路的影响, 发现当阳极高出反射镜1.4 mm后, 图像畸变几乎消失. 还研究了偏置电压对脉冲光电子在时域上的影响, 结果表明随着偏压的增大, 光发射的时间零点会推后且时间展宽变大. 这些工作将为后续超快电子显微镜的发展及光发射电子源的设计奠定基础.
摘要 +
在植物中, 光合作用的高效光电转化效率归因于色素蛋白复合体中所建立的强大捕光网络与灵活的能量转移机制. 对色素蛋白复合体结构与功能的解析是光合作用研究中的重要方向, 对人工光合作用研究和能源可持续发展战略具有指导意义. 随着冷冻电子显微镜的快速发展, 大量复合体的精密结构得以解析. 冷冻光学(光谱)显微镜是冷冻电子显微镜的重要互补技术, 发展至今已有约35年的历史. 该方法通过光谱特征可精确识别多种色素蛋白复合体, 而低温成像不仅有效地抑制了单个复合体或细胞样品的光损伤, 还限制了复合体中色素间的uphill能量转移, 从而提高荧光量子收率. 冷冻光学显微镜不仅成为表征单个蛋白质的结构动态与捕光功能的有力工具; 还为可视化和定量复杂的光合成分在细胞体内的空间分布提供了可能性. 因此, 该技术的应用极大地发展了在微观尺度下分析色素蛋白结构与功能的研究领域, 这对于光合作用研究体系的推进具有重大意义. 本文从单分子光谱与单细胞光谱技术两方面总结了冷冻光谱显微镜技术在自然光合作用中的主要应用与取得的成果, 其中包括探究色素蛋白复合体的捕光功能与蛋白质动态的关联, 复合体中能量异质性的表征, 在细胞体内可视化光合蛋白的能量调控机制等.
摘要 +
近几十年, 量子信息物理极大地促进了量子理论的现代发展, 并在通信、计算、计量等方面展现了巨大的应用前景. 理论基础之一是通用量子计算模型理论, 用于描述量子信息的演化特别是其大规模的应用, 也是算法和纠错码等设计的基础. 本文着重从物理的角度介绍近期在通用量子计算模型上的研究, 结合量子资源理论对量子信息的刻画, 发展了能统一描述不同计算模型的理论框架. 研究发现, 结合通用性和容错性的要求, 可以构建模型的分类表, 它包含上百种不同的通用量子计算方案, 其中多数尚未得到深入研究. 本文重点讨论了在通用性方面即针对信息不同表示形式的四个家族的模型, 其中一类模型是近期提出的量子冯·诺依曼架构, 它可以绕开在量子程序存储和量子控制单元上的不可能定理, 从而构建可量子编程的计算机体系. 另外还探讨了量子芯片与算法设计、量子资源与优势等问题. 本研究展现了通用量子计算模型研究的丰富性和复杂性, 也为量子计算机的建造和量子信息的应用提供了更多的可能.
摘要 +
21世纪以来, 扫描探针显微镜(scanning probe microscope, SPM)在微纳尺度形貌表征、物性测量及微纳加工等领域发挥着越来越重要的作用. 为了使扫描探针显微镜获得更稳定的运行环境、更高的能量分辨率, 人们研发了具备超高真空(ultra high vacuum, UHV)和低温(low temperature, LT)环境的SPM系统(UHV-LT-SPM). 目前, 大多数的UHV-LT-SPM系统通过向连续流式低温恒温器或低温杜瓦中输送液态氦-4(4He), 使SPM的温度达到约4.2 K. 然而由于4He元素在自然界中含量低且因需求日益增长, 导致液氦价格急剧飙升, 严重影响到了4He相关低温设备的正常运行. 为应对上述问题, 干式制冷技术成为新一代低温技术的发展方向. 在此背景下, 将干式制冷技术与扫描探针显微镜相结合, 搭建干式低温扫描探针显微镜, 成为了目前扫描探针仪器领域的研究重点之一. 本文主要从扫描探针显微镜系统设计、降温设计、减振方法以及其设备性能等方面, 介绍目前已经报道的几种干式LT-SPM系统. 最后总结了干式LT-SPM系统目前所遇见的问题和挑战, 探讨了该技术未来的发展方向.
摘要 +
国际单位制的重新定义促进真空计量体系向量子化转变, 真空参数的量子化是国际真空测量学领域目前最具引领性、前瞻性和颠覆性的研究方向之一, 量子真空测量是基于微观粒子体系的量子效应, 利用光学手段和量子力学理论实现真空参数的精密测量. 本文通过自主研制的冷原子真空测量装置操控7Li原子, 利用锂冷原子在磁光阱和磁阱中的逃逸损失特性开展了超高真空测量实验研究, 结果表明, 针对N2, Ar, He, H2四种真空常用气体分子, 在3×10–8—4×10–5 Pa真空范围, 7Li冷原子真空测量的不确定度最大为7.6%—6.0% (k = 2), 7Li冷原子的真空反演结果与传统电离真空计的测量结果具有良好的一致性, 其相对灵敏度因子的最大偏差小于8%, 验证了冷原子量子真空测量的准确性和可靠性, 研究成果对促进全新跨代真空测量技术发展, 满足空间科学探测、超精密测量与高端装备制造等需求具有重要意义.
摘要 +
在选择合适的活性空间和基组、考虑各种物理效应(标量相对论效应、核–价电子关联效应、完备基组极限和自旋–轨道耦合效应)的基础上, 本文利用优化的icMRCI+Q方法获得了X3Σ–/a1Δ/b1Σ+/A3Π/c1Π(OH+)←X2Π(OH)精确的电离能、OH+离子14个Λ-S态和相应的27个Ω态势能曲线. 利用全电子icMRCI/cc-pCV5Z + SOC理论获得了6个Ω态[$ {{{\mathrm{X}}}}{}^3\Sigma _{{0^ + }}^{{ - }} $, $ {{\text{X}}^{3}}{{\Sigma }}_{1}^{{ - }} $, (1)2, (2)2, (2)1和(1)0–]之间的跃迁偶极距. 并且本文获得的电离能、光谱和振动–转动跃迁数据与现有的测量值符合得非常好. 研究发现: 1) (1)2(υ' = 0—6, J' = 2, +)的辐射寿命随着υ'的增大而逐渐缩短, 辐射宽度随着υ'的增大而逐渐增宽; (1)2(υ' = 0—6, J' = 2, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –)自发辐射较弱. 2)(2)2第一势阱(υ' = 0—2, J' = 2, +), (2)1(υ' = 0—9, J' = 1, +)和(1)0–(υ' = 0—8, J' = 0, +)的辐射寿命都是随着υ'的增大而逐渐增长, 辐射宽度都随着υ'的增大而逐渐变窄; (2)2第一势阱(υ' = 0—2, J' = 2, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –), (2)1(υ' = 0—9, J' = 1, +)– $ {\text{X}}{}^{3}{{\Sigma }}_{{{0}^ + }}^{{ - }} $(υ'', J'' = 1, –)和(1)0–(υ' = 0—8, J' = 0, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –)的自发辐射很强. 3) (2)2第一势阱(υ' = 0—2, +), (2)1(υ' = 0—9, +)和(1)0–(υ' = 0—8, +)的辐射寿命都是随着J'的增大而逐渐增长. 本文数据集可在科学数据银行数据库 https://www. doi.org/10.57760/sciencedb.j00213.00058 中访问获取(数据集私有访问链接https://www.scidb.cn/s/B7buIr ).
摘要 +
引力波是物质和能量的剧烈运动和变化所产生的一种物质波, 通过探测引力波可以使得人类从另一个角度去观测宇宙. 在空间引力波探测的过程中, 惯性传感器中的检验质量会受到太空环境中粒子和射线的作用而积累电荷, 影响了引力波探测的精度, 因此需要对检验质量上的电荷进行控制, 即开展电荷管理. 在以往的电荷管理系统中应用紫外汞灯和紫外(UV) LED作为光源, 取得了不同的效果. 本文主要综述了空间引力波探测中电荷管理系统的紫外光源研究进展. 汞灯作为第1代系统光源, 虽能完成任务, 但有着启动慢、功耗高等缺点. UV LED凭借其体积、功耗等方面的优点, 逐步成为目前电荷管理系统的光源. 近年来, 随着紫外微型LED (UV micro-LED)技术的成熟, 其较高的外量子效率和良好的可靠性展示出应用于电荷管理系统的潜力, 是未来电荷管理系统可选择的紫外光源之一.
摘要 +
量子存储是大尺度量子网络的重要组成部分, 基于波导等微纳结构的可集成量子存储可以提供更好的可扩展性并实现更低的光电能耗. 在众多量子存储候选介质中, 151Eu3+:Y2SiO5晶体具有长达6 h的自旋相干寿命和1 h的相干光存储时间, 成为长寿命存储的优异候选材料. 本文通过聚焦离子束在151Eu3+:Y2SiO5晶体表面加工出三角形悬梁臂波导, 波导截面的边长为2 µm, 长度为20 µm, 并对三角形悬梁臂波导中的151Eu3+离子的7F0—5D0光学跃迁以及7F0基态的超精细跃迁开展了研究. 结果显示, 在2 µm尺度的悬梁臂波导中151Eu3+离子基本保持了和块状晶体中151Eu3+离子一致的跃迁展宽及相干寿命, 可以支持量子存储任务的实现. 该工作为实现纳米尺度的151Eu3+离子可集成量子存储器以及单个151Eu3+离子的探测打下基础.
摘要 +
本文主要研究铯原子Λ型三能级原子的部分PT对称和相变, 利用铯原子基态$\left| {6{{\mathrm{S}}_{1/2}}, F = 3} \right\rangle $、$| 6{{\mathrm{S}}_{1/2}}, $$ F = 4 \rangle $和激发态$\left| {6{{\mathrm{P}}_{3/2}}, F' = 4} \right\rangle $组成Λ型三能级原子系统, 由失谐Δ3 = 607 MHz的探测光与耦合光形成双光子拉曼吸收, 构成损耗通道. 增加了共振作用于能级$\left| {6{{\mathrm{S}}_{1/2}}, F = 3} \right\rangle $与$\left| {6{{\mathrm{P}}_{3/2}}, F' = 4} \right\rangle $跃迁的泵浦光改变两个基态能级的布居, 从而使Λ型三能级系统的吸收减小, 在一定条件下形成原子系统的增益通道, 从而构成部分PT对称的原子系统. 实验中通过改变耦合光和探测光的腰斑比σ, 观察到部分PT对称系统中由对称向破缺相的转变. 此外研究了探测光束强度分布的不对称程度Dasym, 精确地测量了部分PT对称的破缺点, 理论计算与实验测量结果相符. 本文所报道的部分PT对称性及其相变的结果, 为主动操纵非厄米系统中的多维激光束开辟了一条途径, 并在设计激光不同部分的光放大和衰减光学器件方面具有潜在的应用价值.
摘要 +
激光等离子体不稳定性(laser plasma instability, LPI)是惯性约束聚变(inertial confinement fusion, ICF)点火过程中的关键问题之一, 多年来受到了广泛的关注. 其中, 宽带激光被认为是解决LPI问题的一个有效途径, 并且目前已经有了大量的模拟研究和少量背向、近前向散射的实验研究, 但是仍然需要侧向散射的实验研究作为补充. 因此, 基于输出达数百焦耳的宽带二倍频激光装置“昆吾”, 本文针对宽带激光与传统窄带激光驱动平面厚靶产生的等离子体不稳定性的侧向散射以及超热电子产额设计实验. 实验结果表明, 功率密度为1×1015 W·cm–2的宽带激光激发的侧向受激布里渊散射(stimulated Brillouin scattering, SBS)与侧向受激拉曼散射(stimulated Raman scattering, SRS)在不同角度下的光谱和份额与窄带激光存在显著差异. 进一步分析发现, 宽带条件下侧向的超热电子份额整体高于窄带, 而此时宽带条件下小角度近前向、小角度近背向的SRS份额却远低于窄带, 初步的定性分析认为此时SRS可能不是超热电子的主要产生机制, 认为此时可能是PDI对超热电子的产生起了主导作用.
- 1
- 2
- 3
- 4
- 5
- ...
- 177
- 178