搜索

x

亮点文章

栏目
领域
文章类型

封面文章

超音速高密度喷流对撞过程中的高效能量转移
张喆, 远晓辉, 张翌航, 刘浩, 方可, 张成龙, 刘正东, 赵旭, 董全力, 刘高扬, 戴羽, 谷昊琛, 李玉同, 郑坚, 仲佳勇, 张杰
2022, 71 (15): 155201. doi: 10.7498/aps.71.20220361
摘要 +
在双锥对撞点火激光核聚变方案中, 两个锥口相距约100 μm放置的金锥内氘氚球冠靶在高功率纳秒激光烧蚀驱动下, 获得沿金锥的球对称压缩和加速, 形成沿着金锥轴向的超音速高密度喷流, 出射喷流在两个金锥的几何中心发生对撞减速并形成聚变密度等离子体. 在对撞过程中, 高速运动喷流的动能转化为内能, 实现对等离子体的预加热, 与此同时, 皮秒拍瓦激光产生的高能快电子从垂直方向入射并加热高密度等离子体, 使其快速升温达到聚变温度, 实现聚变点火. 2020年在中国科学院上海光学精密机械研究所高功率激光联合实验室神光II升级激光装置上, 我们利用总能量为10 kJ的八路纳秒激光进行了两轮实验. 实验利用包括X射线汤姆逊散射、硬X射线单色背光成像、X射线条纹和分幅成像等多种主动、被动诊断方法对超音速高密度喷流对撞过程进行了高时空分辨研究, 实验测量发现, 在单锥口形成的超音速等离子体喷流密度为5.5—8 g/cm3; 在对撞过程中形成了阻滞时间约200 ps的高密度等离子体, 中心密度达到了(46 ± 24) g/cm3. 通过对等离子的温度、速度的分析发现, 对撞过程中动能到内能的转换效率高达89.5%.

特邀综述

  
稳态微聚束加速器光源
唐传祥, 邓秀杰
2022, 71 (15): 152901. doi: 10.7498/aps.71.20220486
摘要 +
稳态微聚束(steady-state micro-bunching, SSMB)原理采用激光操控储存环中的电子, 可形成具有精微纵向/时间结构的电子束团, 即微聚束. 通过有机结合微聚束辐射的强相干特性以及储存环内电子束的高回旋频率特性, SSMB光源可提供高平均功率、窄带宽的相干辐射, 波段可覆盖从太赫兹到软X射线, 具有巨大的科学及产业应用前景. 本文在对现有加速器光源—同步辐射光源和自由电子激光简要介绍的基础上, 对SSMB的概念及潜力、原理验证实验进展、核心物理及关键技术挑战、清华SSMB-EUV光源方案及其对科学研究和芯片光刻潜在的变革性影响进行总结论述. 所综述的工作是在我国自己创新性工作基础上进行的, 对于国内读者了解该领域的工作及发展具有一定的帮助.

编辑推荐

微波驱动下超导量子比特与磁振子的相干耦合
徐达, 王逸璞, 李铁夫, 游建强
2022, 71 (15): 150302. doi: 10.7498/aps.71.20220260
摘要 +
实验上展示了钇铁石榴石(YIG)晶体小球中磁振子与超导量子比特的驱动缀饰态之间的相干强耦合, 磁振子的加入使得在超导量子比特中形成了双重缀饰态. 实验中一个钇铁石榴石晶体小球与一个超导量子比特同时放置在三维谐振腔中, 分别通过磁偶极相互作用和电偶极相互作用与谐振腔中的本征场($\mathrm{TE_{102}}$模式)耦合, 并通过腔模作为媒介实现两者之间的有效相干强耦合. 给超导量子比特施加一个共振的微波驱动并改变驱动强度, 测得耦合系统能级劈裂随驱动强度的变化, 并理论上利用粒子-空穴对与玻色场耦合的模型做了计算. 在大部分的驱动强度范围内实验结果都与理论计算结果符合得较好, 表明驱动下的比特-磁振子耦合系统可以用来模拟粒子-空穴对称对与玻色场的耦合系统. 本文使用的混合量子系统为模拟玻色子与费米子的混合系统提供了一个新途径.

编辑推荐

巴黎-爱丁堡压机中子衍射高压下温度加载实验
杨功章, 谢雷, 陈喜平, 何瑞琦, 韩铁鑫, 牛国梁, 房雷鸣, 贺端威
2022, 71 (15): 156101. doi: 10.7498/aps.71.20220419
摘要 +
巴黎-爱丁堡压机(Paris-Edinbrugh press)因具有大体积样品、便携、结构简单等优点, 被广泛应用于中子源进行高压原位中子衍射实验. 但因单轴加压而导致封垫和组装不断沿径向向外流动的特点, 给高压下组装的加热效率、保温效果、上下压砧的绝缘及热电偶连接等方面带来困难, 从而使得巴黎-爱丁堡压机在高压下的温度加载非常具有挑战性. 本文通过对高温高压组装的结构进行优化设计, 提高了组装的加热效率和保温效果. 通过对热电偶引线方式的优化, 实现了高压下温度的直接测量. 设计的HPT-3组装和HPT-3.5 组装在高压下的温度加载最高可分别达到2000 K和1500 K, 并且二者较大的样品尺寸满足中子衍射实验的需求. 原位高温高压中子衍射实验结果说明, HPT-3组装在压力8.5 GPa、温度1508 K的条件下可以获得高质量的样品的中子衍射谱, 同时该结果也进一步验证了所设计组装的良好稳定性.

编辑推荐

ZIFs纳米晶体中电子偶素的自旋转换
李重阳, 李梦德, 汪美, 李涛, 刘建党, 叶邦角, 陈志权
2022, 71 (15): 157801. doi: 10.7498/aps.71.20220305
摘要 +
ZIFs晶体由咪唑基桥接单金属离子构成, 可通过咪唑酯连接物灵活选取合适的官能团对其结构进行调控, 因而被赋予更多新的性质和功能. ZIFs晶体中孔结构及其化学环境与其性能紧密相关. 本文采用静置法制备了ZIFs纳米晶体. X射线衍射结果证实制备的晶体为典型的ZIF-8晶体, 扫描电子显微镜图可观察到其规则的菱型结构. N2吸附-脱附测试表明ZIFs晶体具有较大的比表面积和孔容, 分别为2966.26 m2/g和3.01 cm3/g. 随着Co摩尔含量的增大, ZIFs晶体比表面积和孔体积逐渐减小, 但是其孔径大小几乎稳定保持在12 Å左右. 而N2吸附-脱附等温线计算得到的孔径分布未显示咪唑配体组成的六元环的超微孔信息(3.4 Å). 此外, 利用正电子湮没寿命和多普勒展宽对晶体的微观结构和表面性能进行了研究. 正电子的寿命谱有4个分量. 较长寿命$ {\tau }_{3} $, $ {\tau }_{4} $分别是o-Ps在其微孔区域和晶体规则棱角间隙处的湮没寿命. 随Co摩尔含量增大, 其寿命$ {\tau }_{3} $几乎没有变化, 而较长寿命$ {\tau }_{4} $从30.89 ns降至12.57 ns, 其对应强度$ {I}_{3} $, $ {I}_{4} $也分别从12.93%和8.15%急剧下降至3.68%和0.54%. 随Co摩尔含量的增大, 多普勒展宽得到的S参数呈连续上升趋势, 进一步多高斯拟合表明p-Ps强度也逐渐增大, 这主要是由于电子偶素发生了自旋转换效应. 因此, ZIFs纳米晶体中$ {\tau }_{4} $下降很可能是由于正电子偶素与晶体表面Co离子发生了自旋转换效应.

编辑推荐

掺杂石墨烯纳米片对硝酸钠相变特性的影响及机理
吕浩翔, 冯黛丽, 冯妍卉, 张欣欣
2022, 71 (15): 158801. doi: 10.7498/aps.71.20220354
摘要 +
纳米增强剂通常被用来提升相变材料的导热性能, 但这种方式通常伴随着复合后材料相变焓的降低. 虽然这种降低难以避免, 但其微观机理乃至影响规律却始终未能明晰. 为深入探究纳米复合相变材料相变焓降低的机理, 本文以熔融硝酸钠(太阳盐的重要组成成分)为相变材料, 制备了石墨烯纳米片质量分数为0%, 0.5%, 1%, 1.5%, 2%的复合相变材料. 通过实验测量与分子动力学模拟的方法深入分析了石墨烯纳米片的掺杂导致熔融硝酸钠产生团簇以及复合材料熔点和相变焓非依数性降低的影响机理. 结果表明, 石墨烯纳米片质量分数为1.5%时, 硝酸钠致密层和石墨烯纳米片间的质心等效距离最接近他们相互作用势的势阱位置, 此时二者之间相互吸引作用最强, 熔盐分子的运动受限最为严重, 难以发生熔化, 从而导致相变焓降低最为显著. 为了最大限度地避免纳米复合相变材料相变焓的损失, 应根据相变材料与纳米增强剂的类型及其相互作用类型, 合理选择纳米增强剂的质量分数. 在实际应用中, 恰当的质量分数还将在一定程度上降低复合相变材料的制备成本.

编辑推荐

电路量子电动力学中基于超绝热捷径的控制相位门实现
王雪梅, 张安琪, 赵生妹
2022, 71 (15): 150301. doi: 10.7498/aps.71.20220248
摘要 +
针对绝热算法在系统演化过程中需要较长操作时间的问题, 本文提出了电路量子电动力学系统中基于超绝热捷径的两量子比特控制相位门的快速制备方案. 首先将量子比特的能级进行编码, 针对不同初始态分类讨论, 获得系统的有效哈密顿量. 通过反绝热驱动, 推导出系统有效哈密顿量的修正项, 以抑制不同本征态之间不必要的跃迁, 从而获得了高保真度的基于超绝热捷径控制相位门. 数值模拟验证了本方案的有效性, 最终保真度为0.991. 所提方案可以加速演化, 并且比绝热通道更有效. 此外, 本方案对谐振器的衰减和超导量子比特的退相干具有鲁棒性. 通过对谐振腔的泄漏、量子比特的自发辐射和退相位的影响分析, 得到的系统最终保真度始终保持在0.984以上.

编辑推荐

石墨烯/Bi0.5Sb1.5Te3柔性热电薄膜及其面内散热器件的设计制备与性能评价
聂晓蕾, 余灏成, 朱婉婷, 桑夏晗, 魏平, 赵文俞
2022, 71 (15): 157301. doi: 10.7498/aps.71.20220358
摘要 +
基于柔性热电薄膜制冷的面内散热技术有望为电子器件高效面内散热提供解决方案, 但柔性热电薄膜电输运性能太低和面内散热器件结构设计困难严重制约了该技术在电子元器件散热中的应用. 本文通过在环氧树脂/Bi0.5Sb1.5Te3柔性热电薄膜中掺入具有同时调控电热输运行为功能的石墨烯, 发现不仅有助于Bi0.5Sb1.5Te3晶粒沿(000l)择优取向, 而且还提供了载流子快速传输通道, 石墨烯/Bi0.5Sb1.5Te3柔性热电薄膜的载流子浓度和迁移率同时显著增大; 石墨烯掺入量为1.0%的柔性热电薄膜室温最高功率因子达到1.56 mW/(K2·m), 与环氧树脂/Bi0.5Sb1.5Te3柔性热电薄膜相比提高了71%, 其最大制冷温差提高了1倍. 利用这种高性能石墨烯/Bi0.5Sb1.5Te3柔性热电薄膜制冷, 设计并制备出了级联结构高效面内散热器件, 发现该器件可以将热量从热源区逐级传输至散热区, 实现热源区温度下降1.4—1.9 ℃, 展现出了高效稳定的面内散热能力.

编辑推荐

低反向漏电自支撑衬底AlGaN/GaN肖特基二极管
武鹏, 张涛, 张进成, 郝跃
2022, 71 (15): 158503. doi: 10.7498/aps.71.20220161
摘要 +
氮化镓材料具有大的禁带宽度(3.4 eV)、高的击穿场强(3.3 MV/cm), 在高温、高压等方面有良好的应用前景. 尤其是对于铝镓氮/氮化镓异质结构材料而言, 由极化效应产生的高面密度和高迁移率二维电子气在降低器件导通电阻、提高器件工作效率方面具有极大的优势. 由于缺乏高质量、大尺寸的氮化镓单晶衬底, 常规氮化镓材料均是在蓝宝石、硅和碳化硅等异质衬底上外延而成. 较大的晶格失配和热失配导致异质外延过程中产生密度高达107—1010 cm–2的穿透位错, 使器件性能难以进一步提升. 本文采用基于自支撑氮化镓衬底的铝镓氮/氮化镓异质结构材料制备凹槽阳极结构肖特基势垒二极管, 通过对欧姆接触区域铝镓氮势垒层刻蚀深度的精确控制, 依托单步自对准凹槽欧姆接触技术解决了低位错密度自支撑氮化镓材料的低阻欧姆接触技术难题, 实现了接触电阻仅为0.37 Ω·mm的低阻欧姆接触; 通过采用慢速低损伤刻蚀技术制备阳极凹槽区域, 使器件阳极金属与氮化镓导电沟道直接接触, 实现了高达3 × 107开关比的高性能器件, 且器件开启电压仅为0.67 V, 425 K高温下, 器件反向漏电仅为1.6 × 10–7 A/mm. 实验结果表明, 基于自支撑氮化镓衬底的凹槽阳极结构铝镓氮/氮化镓肖特基势垒二极管可以有效抑制器件反向漏电, 极大地提升器件电学性能.

专题: 面向类脑计算的物理电子学

  

封面文章

面向神经形态感知和计算的柔性忆阻器基脉冲神经元
朱佳雪, 张续猛, 王睿, 刘琦
2022, 71 (14): 148503. doi: 10.7498/aps.71.20212323
摘要 +
受人脑工作模式的启发, 脉冲神经元作为人工感知系统和神经形态计算体系的基本计算单元发挥着重要作用. 然而, 基于传统互补金属氧化物半导体技术的神经元电路结构复杂, 功耗高, 且缺乏柔韧性, 不利于大规模集成和与人体兼容的柔性感知系统的应用. 本文制备的柔性忆阻器展示出了稳定的阈值转变特性和优异的机械弯折特性, 其弯折半径可达1.5 mm, 弯折次数可达104次. 基于此器件构建的神经元电路实现了神经元的关键积分放电特性, 且其频率-输入电压关系具有整流线性单元相似性, 可实现基于转换法的脉冲神经网络中神经元的非线性处理功能. 此外, 基于电子传输机制和构建的核壳模型, 对柔性忆阻器的工作机制进行分析, 提出了电场和热激发主导的阈值转变机制; 进一步对忆阻器和神经元的电学特性进行电路仿真模拟, 验证了柔性忆阻器和神经元电路工作机制的合理性. 本文对柔性神经元的研究可为神经形态感知和计算系统的构建提供硬件基础和理论指导.
  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 117
  • 118