搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工巨原子三腔耦合系统的光子阻塞效应

骆俊豪 马康杰 梁焱 盛治郡 孙一丁 谭磊

引用本文:
Citation:

人工巨原子三腔耦合系统的光子阻塞效应

骆俊豪, 马康杰, 梁焱, 盛治郡, 孙一丁, 谭磊

Photon blockade effect in artificial giant atom-coupled triple-cavity system

LUO Junhao, MA Kangjie, LIANG Yan, SHENG Zhijun, SUN Yiding, TAN Lei
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文研究了人工巨原子与三个微腔耦合系统中的光子阻塞效应. 首先讨论了弱驱动腔模的情况, 分析了单光子和双光子激发时系统的能级结构和跃迁路径, 研究了系统中光子的统计特性. 其次, 考虑同时驱动人工巨原子和腔模, 探讨了利用量子干涉效应进一步增强光子阻塞. 研究结果表明, 系统的两个腔中出现了对弱驱动具有鲁棒性的光子阻塞效应, 等时二阶关联函数的值为$g^{(2)}(0)\approx 10^{-3.4} $. 另外在同时驱动人工巨原子和腔模的情况下, 本研究实现了最佳光子阻塞, 等时二阶关联函数可达到$g^{(2)}(0)\approx 10^{-6.5} $. 该研究结果可为单光子源的实验实现提供新的可行方案.
    The photon blockade effects in a system consisting of an artificial giant atom coupled with three cavities are investigated. By solving the Schrödinger equation, we obtain the steady-state probability amplitudes of the system and derive the analytical expressions for the equal-time second-order correlation function. Based on these analytical expressions, the optimal conditions for achieving the photon blockade under different driving conditions are derived in detail.We first examine the energy spectra and transition pathways for the single-photon and two-photon excitations in weakly driven cavity mode, and then investigate the statistical properties of photons. It is demonstrated that the optimal conventional photon blockade can be achieved by selecting appropriate driving detuning as characterized by the equal-time second-order correlation function of $g^{\left(2\right)}\left(0\right)\approx{10}^{-3.4} $. Remarkably, we observe that both cavities of the system exhibit robust photon blockade effects against the weak driving. It is also found that with the increase of the coupling strength between the artificial giant atom and cavities, the photon blockade phenomenon becomes more pronounced while maintaining its robustness to the weak driving. Furthermore, we consider the case of simultaneously driving both the artificial giant atom and cavity modes. The unique multi-point coupling characteristics of the artificial giant atom provide additional transition pathways for photons, thereby allowing us to use the resulting quantum interference to further enhance photon blockade. When the system satisfies the optimal parametric conditions for both the traditional and nontraditional blockade effects, one cavity exhibits exceptional photon blockade with $g^{\left(2\right)}\left(0\right)\approx{10}^{-6.5} $.This research greatly relaxes the stringent parameter requirements for the experimental realization of single-photon sources and provides a theoretical support for improving their quality, which is crucial for achieving high-performance single-photon sources.
  • 图 1  人工巨原子三腔耦合系统示意图, 其中人工巨原子与b腔被单色光驱动.

    Fig. 1.  Schematic of a three-cavity system coupled to a giant atom, with both the atom and the b mode driven by monochromatic light.

    图 2  单光子阻塞产生的能级示意图. 当驱动场的频率$ \omega_{{\rm{d}}}=\omega_{0}\pm\sqrt{3}g $, 一个光子被系统共振吸收, 而第二个光子被阻塞

    Fig. 2.  Energy-level diagram for single-photon blockade. When the driving field frequency $ \omega_{{\rm{d}}} = \omega_0 \pm \sqrt{3}g $, one photon is resonantly absorbed by the system, while the second photon is blockaded.

    图 3  (a), (b)分别为a, b腔等时二阶关联函数$ g^{(2)}(0) $随驱动失谐$ \varDelta_0/\kappa $的变化图; (c), (d)分别为a, b腔单光子占据概率$ P_1 $以及双光子占据概率$ P_2 $随驱动失谐$ \varDelta_0/\kappa $的变化图. 红色实线与蓝色虚线分别对应a腔与b腔, 共享参数为$ \varOmega/\kappa= 0.1 ,\;\gamma/\kappa= $$ 0.1 ,\; g/\kappa=25/\sqrt{3} $

    Fig. 3.  (a), (b) Logarithmic plots of the equal-time second-order correlation function $ g^{(2)}(0) $ versus detuning $ \varDelta_{0} /\kappa $ for a, b mode; (c), (d) Logarithmic plots of the single-photon $ P_1 $ and two-photon $ P_2 $ occupation probabilities versus detuning $ \varDelta_0/\kappa $ for a, b mode. Red solid and blue dashed curves represent a and b modes, respectively. Parameters: $ \varOmega/\kappa=0.1, \ \gamma/\kappa=0.1, \ g/\kappa=25/\sqrt{3} $.

    图 4  (a), (b)分别为a, b腔等时二阶关联函数$ g^{(2)}(0) $随驱动强度$ \varOmega/\kappa $的变化图. 共享参数为$ \varDelta_{0}=\sqrt{3}g $, $ \gamma/\kappa=0.1 , $$ g /\kappa =25 /\sqrt{3} $

    Fig. 4.  (a), (b) Logarithmic plots of the equal-time second-order correlation function $ g^{(2)}(0) $ versus $ \varOmega/\kappa $ for a, b mode. Parameters: $ \varDelta_{0}=\sqrt{3}g , \gamma/\kappa=0.1 $ and $ g /\kappa =25 /\sqrt{3} $.

    图 5  (a), (b)分别为a, b腔等时二阶关联函数$ g^{(2)}(0) $随驱动失谐$ \varDelta_0/\kappa $和耦合强度$ g/\kappa $的变化图. 共享参数为$ \varOmega/\kappa=0.1 , $$ \gamma/\kappa=0.1 $. 在上述图像中, 黑色虚线表示最佳常规阻塞条件$ \varDelta_0=\pm\sqrt{3}g $

    Fig. 5.  (a), (b) Logarithmic plots of the equal-time second-order correlation function $ g^{(2)}(0) $ versus $ \varDelta_{0} /\kappa $ and $ g /\kappa $ for a, b mode. Parameters: $ \varOmega/\kappa=0.1 $ and $ \gamma/\kappa=0.1 $. Black dashed lines indicate optimal conditions $ \varDelta_0=\pm\sqrt{3}g $.

    图 6  (a), (b) a, b腔等时二阶关联函数随原子驱动强度ε与腔驱动强度Ω之比$ \varepsilon/\varOmega $的变化图; (c) b腔单光子占据概率$ |C_{g, 0, 1, 0}|^2 $随$ \varepsilon/\varOmega $的变化图; (d) b腔双光子占据概率$ |C_{g, 0, 2, 0}|^2 $随$ \varepsilon/\varOmega $的变化图. 其中用到$ \varDelta_0=\sqrt{3}g $, 其他参数与图3相同

    Fig. 6.  (a), (b) Logarithmic plots of equal-time second-order correlation $ g^{(2)}(0) $ versus driving ratio $ \varepsilon/\varOmega $ for a, b mode; (c) Single-photon occupation probabilities $ |C_{g, 0, 1, 0}|^2 $ versus driving ratio $ \varepsilon/\varOmega $ for b mode; (d) Two-photon occupation probabilities $ |C_{g, 0, 2, 0}|^2 $ versus driving ratio $ \varepsilon/\varOmega $ for b mode. Parameters: $ \varDelta_0=\sqrt{3}g $ and other parameters are the same as Fig. 3.

    图 7  系统从态$ | g, 0, 0, 0 \rangle $到达态$ | g, 0, 2, 0 \rangle $有多条路径, 这些路径之间的量子干涉相消可以产生非常规光子阻塞效应. 在图中, 黑色实线代表系统的所有可能量子态. 黑色双向箭头实线表示在外部驱动下系统吸收光子的过程. 蓝色双向箭头虚线表示当系统中有单个光子时, 不同状态之间的跃迁路径. 红色双向箭头虚线表示当系统中有两个光子时, 不同状态之间的跃迁路径

    Fig. 7.  Quantum destructive interference between multiple transition pathways from state $ | g, 0, 0, 0 \rangle $ to state $| g, 0, 2, 0 \rangle $generates unconventional photon blockade effect. In the diagram, the solid black line represents all possible quantum states of the system. The black solid double-headed arrow denotes the photon absorption process under external driving. The blue double-headed arrows dotted line indicate transition pathways between different states when the system contains a single photon. The red double-headed arrows dotted line represent transition pathways between different states when the system contains two photons.

    图 8  a腔等时二阶关联函数$ g_{{\rm{a}}}^{(2)}(0) $随耦合强度$ g /\kappa $和驱动强度比$ \varepsilon /\varOmega $的变化图, 其中$ \varDelta_{0}=\sqrt{3}g $且其余参数与图5相同

    Fig. 8.  Logarithmic plot of the equal-time second-order correlation function $ g_{{\rm{a}}}^{(2)}(0) $ versus the coupling strength ratio $ \varepsilon/\varOmega $ and coupling strength $ g/\kappa $ for mode a, with $ \varDelta_0 = \sqrt{3}g $ and other parameters are the same as in Fig. 5.

    图 9  (a), (b)分别为a, b腔的等时二阶关联函数$ g^{(2)}(0) $随驱动失谐$ \varDelta_0/\kappa $的变化图. 其中$ g/\kappa=25/\sqrt{3} $, $ \varepsilon=\dfrac{\sqrt{3}}{3}\varOmega $, 其余参数与图5相同

    Fig. 9.  (a), (b) Logarithmic plots of the equal-time second-order correlation function $ g^{(2)}(0) $ versus detuning $ \varDelta_0/\kappa $ for a, b mode, respectively. Parameters: $ g/\kappa=25/\sqrt{3} $, $ \varepsilon=\dfrac{\sqrt{3}}{3}\varOmega $ and other parameters are the same as in Fig. 5.

  • [1]

    Couteau C, Barz S, Durt T, Gerrits T, Huwer J, Prevedel R, Rarity J, Shields A, Weihs G 2023 Nat. Rev. Phys. 5 326Google Scholar

    [2]

    Couteau C, Barz S, Durt T, Gerrits T, Huwer J, Prevedel R, Rarity J, Shields A, Weihs G 2023 Nat. Rev. Phys. 5 354Google Scholar

    [3]

    Tomm N, Javadi A, Antoniadis N O, Najer D, Löbl M C, Korsch A R, Schott R, Valentin S R, Wieck A D, Ludwig A, Warburton R J 2021 Nat. Nanotechnol. 16 399Google Scholar

    [4]

    Senellart P, Solomon G, White A 2017 Nat. Nanotechnol. 12 1026Google Scholar

    [5]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46Google Scholar

    [6]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [7]

    Sangouard N, Simon C, De Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [8]

    Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [9]

    Imamoğlu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467Google Scholar

    [10]

    Werner M J, Imamoğlu A 1999 Phys. Rev. A 61 011801Google Scholar

    [11]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87Google Scholar

    [12]

    Zhou Y H, Shen H Z, Zhang X Y, Yi X X 2018 Phys. Rev. A 97 043819Google Scholar

    [13]

    Brecha R J, Rice P R, Xiao M 1999 Phys. Rev. A 59 2392Google Scholar

    [14]

    Zhou Y H, Zhang X Y, Wu Q C, Ye B L, Zhang Z Q, Zou D D, Shen H Z, Yang C P 2020 Phys. Rev. A 102 033713Google Scholar

    [15]

    Shen H Z, Zhou Y H, Yi X X 2014 Phys. Rev. A 90 023849Google Scholar

    [16]

    Majumdar A, Gerace D 2013 Phys. Rev. B 87 235319Google Scholar

    [17]

    Sun J Y, Shen H Z 2023 Phys. Rev. A 107 043715Google Scholar

    [18]

    Liew T C H, Savona V 2010 Phys. Rev. Lett. 104 183601Google Scholar

    [19]

    Bamba M, Imamoğlu A, Carusotto I, Ciuti C 2011 Phys. Rev. A 83 021802Google Scholar

    [20]

    Sarma B, Sarma A K 2017 Phys. Rev. A 96 053827Google Scholar

    [21]

    Shen H Z, Shang C, Zhou Y H, Yi X X 2018 Phys. Rev. A 98 023856Google Scholar

    [22]

    Lemonde M A, Didier N, Clerk A A 2014 Phys. Rev. A 90 063824Google Scholar

    [23]

    Snijders H J, Frey J A, Norman J, Flayac H, Savona V, Gossard A C, Bowers J E, van Exter M P, Bouwmeester D, Löffler W 2018 Phys. Rev. Lett. 121 043601Google Scholar

    [24]

    Vaneph C, Morvan A, Aiello G, Féchant M, Aprili M, Gabelli J, Estève J 2018 Phys. Rev. Lett. 121 043602Google Scholar

    [25]

    Carusotto I, Ciuti C 2013 Rev. Mod. Phys. 85 299Google Scholar

    [26]

    Shen H Z, Zhou Y H, Yi X X 2015 Phys. Rev. A 91 063808Google Scholar

    [27]

    Zhou Y H, Shen H Z, Shao X Q, Yi X X 2016 Opt. Express 24 17332Google Scholar

    [28]

    Zheng C M, Zhang W, Wang D Y, Han X, Wang H F 2023 New J. Phys. 25 043030Google Scholar

    [29]

    Chen M, Tang J, Tang L, Wu H, Xia K 2022 Phys. Rev. Res. 4 033083Google Scholar

    [30]

    Li M, Zhang Y L, Wu S H, Dong C H, Zou X B, Guo G C, Zou C L 2022 Phys. Rev. Lett. 129 043601Google Scholar

    [31]

    Lu Y W, Liu J F, Li R H, Wu Y X, Tan H S, Li Y Y 2022 New J. Phys. 24 053029Google Scholar

    [32]

    Lin H Y, Wang X Q, Yao Z H, Zou D D 2020 Opt. Express 28 17643Google Scholar

    [33]

    张志强 2025 物理学报 74 164204Google Scholar

    Zhang Z Q 2025 Acta Phys. Sin. 74 164204Google Scholar

    [34]

    李宏, 张斯淇, 郭明, 李美萱, 宋立军 2019 物理学报 68 124203Google Scholar

    Li H, Zhang S Q, Guo M, Li M X, Song L J 2019 Acta Phys. Sin. 68 124203Google Scholar

    [35]

    Hou R, Zhang W, Han X, Wang H F, Zhang S 2025 Sci. Rep. 15 5145Google Scholar

    [36]

    Qiao X, Yao Z, Yang H 2024 Phys. Rev. A 110 053702Google Scholar

    [37]

    Fan X H, Zhang Y N, Yu J P, Liu M Y, He W D, Li H C, Xiong W 2024 Adv. Quantum Technol. 7 2400043Google Scholar

    [38]

    Li H J, Fan L B, Ma S, Liao J Q, Shu C C 2024 Phys. Rev. A 110 043707Google Scholar

    [39]

    Zhou Y H, Liu T, Su Q P, Zhang X Y, Wu Q C, Chen D X, Shi Z C, Shen H Z, Yang C P 2025 Phys. Rev. Lett. 134 183601Google Scholar

    [40]

    Hamsen C, Tolazzi K N, Wilk T, Rempe G 2017 Phys. Rev. Lett. 118 133604Google Scholar

    [41]

    Huang R, Miranowicz A, Liao J Q, Nori F, Jing H 2018 Phys. Rev. Lett. 121 153601Google Scholar

    [42]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press). P134

    [43]

    Rabl P 2011 Phys. Rev. Lett. 107 063601Google Scholar

    [44]

    Redchenko E S, Zens M, Žemlička M, Peruzzo M, Hassani F, Sett R, Zieliński P, Dhar H S, Krimer D O, Rotter S, Fink J M 2025 Phys. Rev. Lett. 134 063601Google Scholar

    [45]

    Ma K J, Liu J, Cai Y, Tan L 2025 Physica Scripta 100 025109Google Scholar

    [46]

    Stewart M, Kwon J, Lanuza A, Schneble D 2020 Phys. Rev. Res. 2 043307Google Scholar

    [47]

    Krinner L, Stewart M, Pazmiño A, Kwon J, Schneble D 2018 Nature 559 589Google Scholar

    [48]

    Hood J D, Goban A, Asenjo-Garcia A, Lu M, Yu S P, Chang D E, Kimble H 2016 Proc. Natl. Acad. Sci. 113 10507Google Scholar

    [49]

    Scigliuzzo M, Calajò G, Ciccarello F, Perez Lozano D, Bengtsson A, Scarlino P, Wallraff A, Chang D, Delsing P, Gasparinetti S 2022 Phys. Rev. X 12 031036

    [50]

    Ferreira V S, Banker J, Sipahigil A, Matheny M H, Keller A J, Kim E, Mirhosseini M, Painter O 2021 Phys. Rev. X 11 041043

  • [1] 朱中华, 陈可可, 张玉青, 付响云, 彭朝晖, 陆振烟, 柴一峰, 熊祖周, 谭磊. 基于局域耦合相位调控的二能级巨原子-双波导系统中的单光子散射. 物理学报, doi: 10.7498/aps.74.20250505
    [2] 张志强. 克尔介质单模腔中光学参量放大与驱动力协同的光子阻塞效应. 物理学报, doi: 10.7498/aps.74.20250712
    [3] 朱明杰, 赵微, 王治海. 巨腔系统中的光子屏蔽. 物理学报, doi: 10.7498/aps.72.20230049
    [4] 杜梦瑶, 邱志勇. Ni/Pt异质结界面的自旋阻塞效应. 物理学报, doi: 10.7498/aps.72.20222288
    [5] 徐耀坤, 孙仕海, 曾瑶源, 杨俊刚, 盛卫东, 刘伟涛. 基于双光子干涉的量子全息理论框架. 物理学报, doi: 10.7498/aps.72.20231242
    [6] 李瑞豪, 刘俊扬, 洪文晶. 单分子器件电输运中基于量子干涉效应的调控策略. 物理学报, doi: 10.7498/aps.71.20211819
    [7] 刘雪莹, 成书杰, 高先龙. 完备Buck-Sukumar模型的光子阻塞效应. 物理学报, doi: 10.7498/aps.70.20220238
    [8] 李宇昂, 吴迪, 王栋立, 胡昊, 潘毅. 基于原子操纵技术的人工量子结构研究. 物理学报, doi: 10.7498/aps.70.20201501
    [9] 戴雨菲, 陈垚彤, 王岚, 银恺, 张岩. 三模腔-原子闭环系统中可控的量子干涉和光子传输. 物理学报, doi: 10.7498/aps.69.20200184
    [10] 邹承役, 吴绍全, 赵国平. 串型耦合双量子点处于自旋阻塞区时磁输运性质的研究. 物理学报, doi: 10.7498/aps.62.017201
    [11] 孙江, 孙娟, 王颖, 苏红新, 曹谨丰. 中间态引入量子干涉的三光子共振非简并六波混频. 物理学报, doi: 10.7498/aps.61.114213
    [12] 韩奎, 王子煜, 沈晓鹏, 吴琼华, 童星, 唐刚, 吴玉喜. 基于光子晶体自准直和带隙效应的马赫-曾德尔干涉仪设计. 物理学报, doi: 10.7498/aps.60.044212
    [13] 李园, 窦秀明, 常秀英, 倪海桥, 牛智川, 孙宝权. 基于InAs单量子点的单光子干涉. 物理学报, doi: 10.7498/aps.60.037809
    [14] 李悦科, 张桂明, 高云峰. 非简并双光子Jaynes-Cummings模型腔场谱中的量子干涉. 物理学报, doi: 10.7498/aps.59.1786
    [15] 姚志欣, 钟建伟, 毛邦宁, 陈 钢, 潘佰良. 双孔干涉效应的量子描述. 物理学报, doi: 10.7498/aps.56.3185
    [16] 陈 峻, 刘正东, 郑 军, 方慧娟. 基于量子干涉效应的四能级原子系统中的vacuum-induced coherence效应. 物理学报, doi: 10.7498/aps.56.6441
    [17] 孙 江, 左战春, 米 辛, 俞祖和, 吴令安, 傅盘铭. 引入量子干涉的双光子共振非简并四波混频. 物理学报, doi: 10.7498/aps.54.149
    [18] 李永放, 孙建锋. 梯型四能级系统中超窄电磁感应透明与无反转增益. 物理学报, doi: 10.7498/aps.52.547
    [19] 王继锁, 冯健, 詹明生. 无耗散介观电感耦合电路的库仑阻塞和电荷的量子效应. 物理学报, doi: 10.7498/aps.50.299
    [20] 金卫国, 赵国庆, 邵其鋆, 任月华, 吴向坚, 周筑颖. 用阻塞效应测量28Si 13.095MeV激发态能级寿命. 物理学报, doi: 10.7498/aps.36.819
计量
  • 文章访问数:  389
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-25
  • 修回日期:  2025-08-20
  • 上网日期:  2025-09-05

/

返回文章
返回