-
本文研究了两个巨原子耦合两个一维无限长波导体系中单光子的散射问题。基于实空间方法推导了各散射振幅的解析表达式,并据此给出了光子定向路由的一般条件。研究发现,通过调节原子间的偶极相互作用、累积相位和局域耦合相位差等参数,可实现定向路由光子频率的连续可调。进一步揭示了光子输运的非互易特性与手性散射机制:理论分析表明,非互易性由累积相位、局域耦合相位差、光子-原子频率失谐及原子耦合强度共同调控,据此建立了完美非互易散射的判据,并展示了两种典型的完美非互易现象;与之不同的是,手性散射仅受累积相位和局域耦合相位差调控,与频率失谐无关,由此导出两种完美手性散射的条件,并对其进行展示。值得注意的是,在特定参数条件下,系统可同时实现完美手性散射与定向散射的协同效应,展现了该体系在量子信息处理中的潜在应用价值。This work investigates single-photon scattering in a waveguide quantum electrodynamics system consisting of two dipole-coupled giant atoms, each interacting with a separate one-dimensional infinite waveguide at two distinct coupling points. Our primary objective is to establish a theoretical framework for manipulating photon propagation paths via quantum interference induced by multiple coupling points and local phase engineering. Different from conventional chiral coupling schemes, we implement an innovative approach utilizing locally engineered coupling phases at each atom-waveguide interface to achieve effective chiral coupling, thereby introducing novel quantum interference mechanisms.
Using a real-space approach, we derive analytical expressions for four-port scattering amplitudes. We establish conditions for achieving perfect directional routing to any output port and demonstrate coherent control mechanisms enabled by geometric and local coupling phases. Continuous frequency tunability is primarily achieved through dipole-dipole interaction, with fine-tuning via the accumulated phase and local coupling phases.
Local phase differences precisely regulate port-specific probability distributions within waveguides while preserving total routing efficiency.
Furthermore, we elucidate nonreciprocal transport and chiral scattering mechanisms. Analysis reveals distinct governing principles: perfect nonreciprocity arises from the interplay of the accumulated phase, local coupling phases, photon-atom detuning, and dipole-dipole interaction. In contrast, perfect chiral scattering depends exclusively on the accumulated phase and local coupling phases, independent of the detuning. Notably, under phase-matching conditions, the system achieves simultaneous perfect chirality and directional routing, enabling frequency-selective path-asymmetric photon control. These findings provide a comprehensive framework for manipulating quantum interference in multi-atom waveguide systems, highlighting applications in quantum information processing including tunable single-photon routers, isolators, and chiral quantum nodes. Experimental feasibility is demonstrated through superconducting circuit implementations where local phases can be dynamically adjusted.-
Keywords:
- giant atom /
- directional routing /
- nonreciprocity /
- chiral scattering
-
[1] Kockum A F, Delsing P, Johansson G 2014 Phys. Rev. A 90 013837
[2] Qiu Q Y, Wu Y, Lü X Y 2023 Sci. China-Phys. Mech. Astron. 66 224212
[3] Wen P Y, Lin K T, Kockum A F, Suri B, Ian H, Chen J C, Mao S Y, Chiu C C, Delsing P, Nori F, Lin G D, Hoi I C 2019 Phys. Rev. Lett. 123 233602
[4] Kockum A F, Johansson G, Nori F 2018 Phys. Rev. Lett. 120 140404
[5] Kannan B, Ruckriegel M J, Campbell D L, Kockum A F, Braumjller J, Kim D K, Kjaergaard M, Krantz P, Melville A, Niedzielski B M, Vepsäläinen A, Winik R, Yoder J L, Nori F, Orlando T P, Gustavsson S, Oliver W D 2020 Nature 583 775
[6] Carollo A, Cilluffo D, Ciccarello F 2020 Phys. Rev. Res. 2 043184
[7] Du L, Guo L, Li Y 2023 Phys. Rev. A 107 023705
[8] Andersson G, Suri B, Guo L, Aref T, Delsing P 2019 Nat. Phys. 15 1123
[9] Guo L, Kockum A F, Marquardt F, Johansson G 2020 Phys. Rev. Res. 2 043014
[10] Guo S, Wang Y, Purdy T, Taylor J 2020 Phys. Rev. A 102 033706
[11] Zhao W, Wang Z H 2020 Phys. Rev. A 101 053855
[12] Wang X, Liu T, Kockum A F, Li H R, Nori F 2021 Phys. Rev. Lett. 126 043602
[13] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Zoller P 2017 Nature 541 473
[14] Soro A, Kockum A F 2022 Phys. Rev. A 105 023712
[15] Wang X, Li H R 2022 Quantum Sci. Technol. 7 035007
[16] Chen Y T, Du L, Guo L, Wang Z, Zhang Y, Li Y, Wu J H 2022 Commun. Phys. 5 215
[17] Zhou J, Yin X L, Liao J Q 2023 Phys. Rev. A 107 063703
[18] Joshi C, Yang F, Mirhosseini M 2023 Phys. Rev. X 13 021039
[19] Li J, Lu J, Gong Z R, Zhou L 2024 New J. Phys. 26 033025
[20] Chen Y T, Du L, Wang Z H, Artoni M, La Rocca G C, Wu J H 2024 Phys. Rev. A 109 063710
[21] Zheng J C, Dong X L, Chen J Q, Hei X L, Pan X F, Yao X Y, Ren Y M, Qiao Y F, Li P B 2024 Phys. Rev. A 109 063709
[22] Du L, Chen Y T, Li Y 2021 Phys. Rev. Res. 3 043226
[23] Guo L, Grimsmo A L, Kockum A F, Pletyukhov M, Johansson G 2017 Phys. Rev. A 95 053821
[24] Zhu Y T, Xue S, Wu R B, Li W L, Peng Z H, Jiang M 2022 Phys. Rev. A 106 043710
[25] Yu H, Wang Z, Wu J H 2021 Phys. Rev. A 104 013720
[26] Yin X L, Luo W B, Liao J Q 2022 Phys. Rev. A 106 063703
[27] Santos A C, Bachelard R 2023 Phys. Rev. Lett. 130 053601
[28] Yin X L, Liao J Q 2023 Phys. Rev. A 108 023728
[29] Cai G, Ma X S, Huang X, Cheng M T 2024 Opt. Express 32 969
[30] Ma X S, Quan J H, Lu Y N, Cheng M T 2024 Quantum Inf. Process 23 1
[31] Huang J S, Huang H W, Li Y L, Xu Z H 2024 Chin. Phys. B 33 050506
[32] Zhu M J, Zhao W, Wang Z H 2023 Acta Phys. Sin. 72 094202 (in Chinese) [朱明杰,赵微,王治海 2023 物理学报 72 094202]
[33] Gustafsson M V, Aref T, Kockum A F, Ekström M K, Johansson G, Delsing P 2014 Science 346 207
[34] Du L, Cai M R, Wu J H, Wang Z H, Li Y 2021 Phys. Rev. A 103 053701
[35] Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718 1
[36] Vadiraj A M, Ask A, McConkey T G, Nsanzineza I, Chang C S, Kockum A F, Wilson CM 2021 Phys. Rev. A 103 023710
[37] Blais A, Grimsmo A L, Girvin S M, Wallraff A 2021 Rev. Mod. Phys. 93 025005
[38] González-Tudela A, Munoz C S, Cirac J I 2019 Phys. Rev. Lett. 122 203603
[39] Du L, Zhang Y, Wu J H, Kockum A F, Li Y 2022 Phys. Rev. Lett. 128 223602
[40] Chen Y T, Du L, Zhang Y, Guo L, Wu J H, Artoni M, La Rocca G C 2023 Phys. Rev. Res. 5 043135
[41] Wang Z Q, Wang Y P, Yao J G, Shen R C, Wu W J, Qian J, Li J, Zhu S Y, You J Q 2022 Nat. Commun. 13 7580
[42] Zhao Z, Zhang Y, Wang Z H 2022 Front. Phys. 17 1
[43] Du L, Li Y 2021 Phys. Rev. A 104 023712
[44] Shi C, Cheng M T, Ma X S, Wang D, Huang X S, Wang B, Zhang J Y 2018 Chin. Phys. Lett. 35 054202
[45] Peng J S, Li G X 1993 Phys. Rev. A 47 4212
[46] Shen J T, Fan S H 2009 Phys. Rev. A 79 023837
[47] Poudyal B, Mirza I M 2020 Phys. Rev. Res. 2 043048
[48] Roy D, Wilson C M, Firstenberg O 2017 Rev. Mod. Phys. 89 021001
[49] Wang R T, Wang X D, Mei F, Xiao L T, Jia S T 2025 Acta Phys. Sin. 74 084205 (in Chinese) [汪润婷,王旭东,梅锋,肖连团,贾锁堂 2025 物理学报 74 084205]
[50] Wang Z Y, Chen F J, Xi X, Gao Z, Yang Y H 2024 Acta Phys. Sin. 73 064201 (in Chinese) [王子尧,陈福家,郗翔,高振,杨怡豪 2024 1物理学报 73 064201]
[51] Sun X J, Liu W X, Chen H, Li H R 2023 Commun. Theor. Phys. 75 035103
计量
- 文章访问数: 102
- PDF下载量: 4
- 被引次数: 0