搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于局域耦合相位调控的二能级巨原子-双波导系统中的单光子散射

朱中华 陈可可 张玉青 付响云 彭朝晖 陆振烟 柴一峰 熊祖周 谭磊

引用本文:
Citation:

基于局域耦合相位调控的二能级巨原子-双波导系统中的单光子散射

朱中华, 陈可可, 张玉青, 付响云, 彭朝晖, 陆振烟, 柴一峰, 熊祖周, 谭磊

Tunable Single-Photon Scattering in a Two-Level Giant Atom-Waveguide Coupled System with Local Coupling Phases

ZHU Zhonghua, CHEN Keke, ZHANG Yuqing, FU Xiangyun, PENG Zhaohui, LU Zhenyan, CHAI Yifeng, XIONG Zuzhou, TAN Lei
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文研究了两个巨原子耦合两个一维无限长波导体系中单光子的散射问题。基于实空间方法推导了各散射振幅的解析表达式,并据此给出了光子定向路由的一般条件。研究发现,通过调节原子间的偶极相互作用、累积相位和局域耦合相位差等参数,可实现定向路由光子频率的连续可调。进一步揭示了光子输运的非互易特性与手性散射机制:理论分析表明,非互易性由累积相位、局域耦合相位差、光子-原子频率失谐及原子耦合强度共同调控,据此建立了完美非互易散射的判据,并展示了两种典型的完美非互易现象;与之不同的是,手性散射仅受累积相位和局域耦合相位差调控,与频率失谐无关,由此导出两种完美手性散射的条件,并对其进行展示。值得注意的是,在特定参数条件下,系统可同时实现完美手性散射与定向散射的协同效应,展现了该体系在量子信息处理中的潜在应用价值。
    This work investigates single-photon scattering in a waveguide quantum electrodynamics system consisting of two dipole-coupled giant atoms, each interacting with a separate one-dimensional infinite waveguide at two distinct coupling points. Our primary objective is to establish a theoretical framework for manipulating photon propagation paths via quantum interference induced by multiple coupling points and local phase engineering. Different from conventional chiral coupling schemes, we implement an innovative approach utilizing locally engineered coupling phases at each atom-waveguide interface to achieve effective chiral coupling, thereby introducing novel quantum interference mechanisms.
    Using a real-space approach, we derive analytical expressions for four-port scattering amplitudes. We establish conditions for achieving perfect directional routing to any output port and demonstrate coherent control mechanisms enabled by geometric and local coupling phases. Continuous frequency tunability is primarily achieved through dipole-dipole interaction, with fine-tuning via the accumulated phase and local coupling phases.
    Local phase differences precisely regulate port-specific probability distributions within waveguides while preserving total routing efficiency.
    Furthermore, we elucidate nonreciprocal transport and chiral scattering mechanisms. Analysis reveals distinct governing principles: perfect nonreciprocity arises from the interplay of the accumulated phase, local coupling phases, photon-atom detuning, and dipole-dipole interaction. In contrast, perfect chiral scattering depends exclusively on the accumulated phase and local coupling phases, independent of the detuning. Notably, under phase-matching conditions, the system achieves simultaneous perfect chirality and directional routing, enabling frequency-selective path-asymmetric photon control. These findings provide a comprehensive framework for manipulating quantum interference in multi-atom waveguide systems, highlighting applications in quantum information processing including tunable single-photon routers, isolators, and chiral quantum nodes. Experimental feasibility is demonstrated through superconducting circuit implementations where local phases can be dynamically adjusted.
  • [1]

    Kockum A F, Delsing P, Johansson G 2014 Phys. Rev. A 90 013837

    [2]

    Qiu Q Y, Wu Y, Lü X Y 2023 Sci. China-Phys. Mech. Astron. 66 224212

    [3]

    Wen P Y, Lin K T, Kockum A F, Suri B, Ian H, Chen J C, Mao S Y, Chiu C C, Delsing P, Nori F, Lin G D, Hoi I C 2019 Phys. Rev. Lett. 123 233602

    [4]

    Kockum A F, Johansson G, Nori F 2018 Phys. Rev. Lett. 120 140404

    [5]

    Kannan B, Ruckriegel M J, Campbell D L, Kockum A F, Braumjller J, Kim D K, Kjaergaard M, Krantz P, Melville A, Niedzielski B M, Vepsäläinen A, Winik R, Yoder J L, Nori F, Orlando T P, Gustavsson S, Oliver W D 2020 Nature 583 775

    [6]

    Carollo A, Cilluffo D, Ciccarello F 2020 Phys. Rev. Res. 2 043184

    [7]

    Du L, Guo L, Li Y 2023 Phys. Rev. A 107 023705

    [8]

    Andersson G, Suri B, Guo L, Aref T, Delsing P 2019 Nat. Phys. 15 1123

    [9]

    Guo L, Kockum A F, Marquardt F, Johansson G 2020 Phys. Rev. Res. 2 043014

    [10]

    Guo S, Wang Y, Purdy T, Taylor J 2020 Phys. Rev. A 102 033706

    [11]

    Zhao W, Wang Z H 2020 Phys. Rev. A 101 053855

    [12]

    Wang X, Liu T, Kockum A F, Li H R, Nori F 2021 Phys. Rev. Lett. 126 043602

    [13]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Zoller P 2017 Nature 541 473

    [14]

    Soro A, Kockum A F 2022 Phys. Rev. A 105 023712

    [15]

    Wang X, Li H R 2022 Quantum Sci. Technol. 7 035007

    [16]

    Chen Y T, Du L, Guo L, Wang Z, Zhang Y, Li Y, Wu J H 2022 Commun. Phys. 5 215

    [17]

    Zhou J, Yin X L, Liao J Q 2023 Phys. Rev. A 107 063703

    [18]

    Joshi C, Yang F, Mirhosseini M 2023 Phys. Rev. X 13 021039

    [19]

    Li J, Lu J, Gong Z R, Zhou L 2024 New J. Phys. 26 033025

    [20]

    Chen Y T, Du L, Wang Z H, Artoni M, La Rocca G C, Wu J H 2024 Phys. Rev. A 109 063710

    [21]

    Zheng J C, Dong X L, Chen J Q, Hei X L, Pan X F, Yao X Y, Ren Y M, Qiao Y F, Li P B 2024 Phys. Rev. A 109 063709

    [22]

    Du L, Chen Y T, Li Y 2021 Phys. Rev. Res. 3 043226

    [23]

    Guo L, Grimsmo A L, Kockum A F, Pletyukhov M, Johansson G 2017 Phys. Rev. A 95 053821

    [24]

    Zhu Y T, Xue S, Wu R B, Li W L, Peng Z H, Jiang M 2022 Phys. Rev. A 106 043710

    [25]

    Yu H, Wang Z, Wu J H 2021 Phys. Rev. A 104 013720

    [26]

    Yin X L, Luo W B, Liao J Q 2022 Phys. Rev. A 106 063703

    [27]

    Santos A C, Bachelard R 2023 Phys. Rev. Lett. 130 053601

    [28]

    Yin X L, Liao J Q 2023 Phys. Rev. A 108 023728

    [29]

    Cai G, Ma X S, Huang X, Cheng M T 2024 Opt. Express 32 969

    [30]

    Ma X S, Quan J H, Lu Y N, Cheng M T 2024 Quantum Inf. Process 23 1

    [31]

    Huang J S, Huang H W, Li Y L, Xu Z H 2024 Chin. Phys. B 33 050506

    [32]

    Zhu M J, Zhao W, Wang Z H 2023 Acta Phys. Sin. 72 094202 (in Chinese) [朱明杰,赵微,王治海 2023 物理学报 72 094202]

    [33]

    Gustafsson M V, Aref T, Kockum A F, Ekström M K, Johansson G, Delsing P 2014 Science 346 207

    [34]

    Du L, Cai M R, Wu J H, Wang Z H, Li Y 2021 Phys. Rev. A 103 053701

    [35]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718 1

    [36]

    Vadiraj A M, Ask A, McConkey T G, Nsanzineza I, Chang C S, Kockum A F, Wilson CM 2021 Phys. Rev. A 103 023710

    [37]

    Blais A, Grimsmo A L, Girvin S M, Wallraff A 2021 Rev. Mod. Phys. 93 025005

    [38]

    González-Tudela A, Munoz C S, Cirac J I 2019 Phys. Rev. Lett. 122 203603

    [39]

    Du L, Zhang Y, Wu J H, Kockum A F, Li Y 2022 Phys. Rev. Lett. 128 223602

    [40]

    Chen Y T, Du L, Zhang Y, Guo L, Wu J H, Artoni M, La Rocca G C 2023 Phys. Rev. Res. 5 043135

    [41]

    Wang Z Q, Wang Y P, Yao J G, Shen R C, Wu W J, Qian J, Li J, Zhu S Y, You J Q 2022 Nat. Commun. 13 7580

    [42]

    Zhao Z, Zhang Y, Wang Z H 2022 Front. Phys. 17 1

    [43]

    Du L, Li Y 2021 Phys. Rev. A 104 023712

    [44]

    Shi C, Cheng M T, Ma X S, Wang D, Huang X S, Wang B, Zhang J Y 2018 Chin. Phys. Lett. 35 054202

    [45]

    Peng J S, Li G X 1993 Phys. Rev. A 47 4212

    [46]

    Shen J T, Fan S H 2009 Phys. Rev. A 79 023837

    [47]

    Poudyal B, Mirza I M 2020 Phys. Rev. Res. 2 043048

    [48]

    Roy D, Wilson C M, Firstenberg O 2017 Rev. Mod. Phys. 89 021001

    [49]

    Wang R T, Wang X D, Mei F, Xiao L T, Jia S T 2025 Acta Phys. Sin. 74 084205 (in Chinese) [汪润婷,王旭东,梅锋,肖连团,贾锁堂 2025 物理学报 74 084205]

    [50]

    Wang Z Y, Chen F J, Xi X, Gao Z, Yang Y H 2024 Acta Phys. Sin. 73 064201 (in Chinese) [王子尧,陈福家,郗翔,高振,杨怡豪 2024 1物理学报 73 064201]

    [51]

    Sun X J, Liu W X, Chen H, Li H R 2023 Commun. Theor. Phys. 75 035103

  • [1] 吴海滨, 刘迎娣, 刘彦军, 李金花, 刘建军. 量子点耦合强度对手性Majorana费米子共振交换的调制. 物理学报, doi: 10.7498/aps.73.20240739
    [2] 张杰, 陈爱喜, 彭泽安. 基于双原子超-亚辐射态选择性驱动的空间定向关联辐射. 物理学报, doi: 10.7498/aps.73.20240521
    [3] 关欣, 陈刚, 潘婧, 游秀芬, 桂志国. 人造霍尔管中的基态手性流. 物理学报, doi: 10.7498/aps.71.20220293
    [4] 祝可嘉, 郭志伟, 陈鸿. 实验观测非厄米系统奇异点的手性翻转现象. 物理学报, doi: 10.7498/aps.71.20220842
    [5] 王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维. 层状手性拓扑磁材料Cr1/3NbS2的磁学特性. 物理学报, doi: 10.7498/aps.69.20200007
    [6] 耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰. 手性声子晶体中拓扑声传输. 物理学报, doi: 10.7498/aps.68.20191007
    [7] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控. 物理学报, doi: 10.7498/aps.67.20180513
    [8] 俞杭, 徐锡方, 牛谦, 张力发. 声子角动量与手性声子. 物理学报, doi: 10.7498/aps.67.20172407
    [9] 赖晓磊. 高聚焦高斯光束对左手性材料球轴向力的光线模型计算. 物理学报, doi: 10.7498/aps.62.184201
    [10] 沈红霞, 吴国祯, 王培杰. 手性分子2, 3-丁二醇的旋光拉曼光谱研究. 物理学报, doi: 10.7498/aps.62.053301
    [11] 于明章, 曾小东, 王大伟, 羊亚平. 左手性材料对V形三能级原子光谱的影响. 物理学报, doi: 10.7498/aps.61.043203
    [12] 莽朝永, 苟高章, 刘彩萍, 吴克琛. 木榄醇手性光谱的密度泛函研究. 物理学报, doi: 10.7498/aps.60.043101
    [13] 徐兰青, 李 晖, 谢树森. 手性介质中后向散射米勒矩阵特性及其在血糖无创检测中的应用初探. 物理学报, doi: 10.7498/aps.57.6024
    [14] 林志立. 左手性介质透镜系统的赛德尔像差特性研究. 物理学报, doi: 10.7498/aps.56.5758
    [15] 张慧鹏, 金庆华, 王玉芳, 李宝会, 丁大同. 单壁碳纳米管手性角对声子振动频率的影响. 物理学报, doi: 10.7498/aps.54.4279
    [16] 郑仰东, 李俊庆, 李淳飞. 双振子模型手性分子介质的二次谐波理论. 物理学报, doi: 10.7498/aps.52.372
    [17] 郑仰东, 李俊庆, 李淳飞. 耦合双振子模型手性分子的微观参量对和频过程的影响. 物理学报, doi: 10.7498/aps.51.1279
    [18] 陶卫东, 夏海平, 白贵儒, 董建峰, 聂秋华. 固体手性材料的研制及其特性测试. 物理学报, doi: 10.7498/aps.51.685
    [19] 张振华, 彭景翠, 陈小华, 张华. 手性环状碳纳米管的电子结构及磁化特性. 物理学报, doi: 10.7498/aps.50.1150
    [20] 李俊庆, 李淳飞, 辛 丽, 刘树田, 塔·米·伊丽依诺娃, 尼·伊·科罗迪耶夫. 非导电型各向同性手性介质中非线性旋光的宏观理论. 物理学报, doi: 10.7498/aps.48.1052
计量
  • 文章访问数:  102
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-11

/

返回文章
返回