搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蓝失谐驱动下双腔光力系统中的光学非互易性

张利巍 李贤丽 杨柳

引用本文:
Citation:

蓝失谐驱动下双腔光力系统中的光学非互易性

张利巍, 李贤丽, 杨柳

Optical nonreciprocity with blue-detuned driving in two-cavity optomechanics

Zhang Li-Wei, Li Xian-Li, Yang Liu
PDF
HTML
导出引用
  • 光学非互易性对建立量子网络和现代通讯技术都是不可或缺的. 本文研究了双腔光力学系统在蓝失谐驱动下如何实现完美的光学非互易性. 研究发现此系统中的光学非互易性来源于系统中的光力相互作用和腔模线性耦合相互作用之间的量子干涉效应. 在应用光力学输入输出关系得出输出光场表达式后, 给出了在此系统中实现完美光学非互易性的条件以及影响非互易谱线宽度的因素. 另外还发现当系统参数(耗散速率)一定时, 可以存在两套耦合强度来实现完美的光学非互易性. 最后利用劳斯-霍尔维茨(Routh-Hurwitz)稳定性判据给出了系统的稳定条件.
    Radiation pressure in an optomechanical system can be used to generate various quantum phenomena. Recently, one paid more attention to the study of optical nonreciprocity in an optomechanical system, and nonreciprocal devices are indispensable for building quantum networks and ubiquitous in modern communication technology. Here in this work, we study how to realize the perfect optical nonreciprocity in a two-cavity optomechanical system with blue-detuned driving. Our calculations show that the optical nonreciprocity comes from the quantum interference of signal transmission between two possible paths corresponding to the two interactions in this system, i.e. optomechanical interaction and linearly-coupled interaction. According to the standard input-output relation of optical field in cavity optomechanics, we obtain the expression of output optical field, from which we can derive the essential conditions to achieve the perfect optical nonreciprocity, and find there are two sets of coupling strengths both of which can realize the perfect optical nonreciprocal transmission. Because the system is driven by blue-detuned driving, the system is stable only under some conditions which we can obtain according to the Routh-Hurwitz criterion. Due to the blue-detuned driving, there will be transmission gain (transmission amplitude is greater than 1) in the nonreciprocal transmission spectrum. We also find that the bandwidth of nonreciprocal transmission spectrum is in proportion to mechanical decay rate if mechanical decay rate is much less than the cavity decay rate. In other words, in a realistic optomechanical parameter regime, where mechanical decay rate is much less than cavity decay rate, the bandwidth of nonreciprocal transmission spectrum is very narrow. Our results can also be applied to other parametrically coupled three-mode bosonic systems and may be used to realize the state transfer process and optical nonreciprocal transmission in an optomechanical system.
      通信作者: 李贤丽, lxl7158@163.com ; 杨柳, lyang@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 41472126, 11804066)、中国博士后科学基金(批准号: 2018M630337)、中央高校基本科研业务费(批准号:3072019CFM0405)、黑龙江省自然科学基金(批准号: LH2019A005)和黑龙江省博士后基金(批准号: LBH-Z18062)资助的课题.
      Corresponding author: Li Xian-Li, lxl7158@163.com ; Yang Liu, lyang@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41472126, 11804066), the China Postdoctoral Science Foundation (Grant No. 2018M630337), the Fundamental Research Fund for the Central Universities, China (Grant No. 3072019CFM0405), the Natural Science Foundation of Heilongjiang Province, China (Grant No. LH2019A005), and the Heilongjiang Postdoctoral Sustentation Fund, China (Grant No. LBH-Z18062).
    [1]

    Jalas D, Petrov A, Eich M, et al. 2013 Nat. Photonics 7 579Google Scholar

    [2]

    Aplet L J, Carson J W 1964 Appl. Opt. 3 544Google Scholar

    [3]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [4]

    陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 物理学报 64 164211Google Scholar

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211Google Scholar

    [5]

    陈华俊, 方贤文, 陈昌兆, 李洋 2016 物理学报 65 194205Google Scholar

    Chen H J, Fang X W, Chen C Z, Li Y 2016 Acta Phys. Sin. 65 194205Google Scholar

    [6]

    严晓波, 杨柳, 田雪冬, 刘一谋, 张岩 2014 物理学报 63 204201Google Scholar

    Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201Google Scholar

    [7]

    班章, 梁静秋, 吕金光, 梁中翥, 冯思悦 2018 物理学报 67 070701Google Scholar

    Zhang B, Liang J Q, Lü J G, Liang Z Z, Feng S Y 2018 Acta Phys. Sin. 67 070701Google Scholar

    [8]

    Chen R X, Shen L T, Yang Z B, Wu H Z, Zheng S B 2014 Phys. Rev. A 89 023843Google Scholar

    [9]

    Liao J Q, Wu Q Q, Nori F 2014 Phys. Rev. A 89 014302Google Scholar

    [10]

    Yan X B 2017 Phys. Rev. A 96 053831Google Scholar

    [11]

    He Q Y, Ficek Z 2014 Phys. Rev. A 89 022332Google Scholar

    [12]

    张秀龙, 鲍倩倩, 杨明珠, 田雪松 2018 物理学报 67 104203Google Scholar

    Zhang X L, Bao Q Q, Yang M Z, Tian X S 2018 Acta Phys. Sin. 67 104203Google Scholar

    [13]

    Kiesewetter S, He Q Y, Drummond P D, Reid M D 2014 Phys. Rev. A 90 043805Google Scholar

    [14]

    Lin Q, He B, Ghobadi R, Simon C 2014 Phys. Rev. A 90 022309Google Scholar

    [15]

    He Q Y, Reid M D 2013 Phys. Rev. A 88 052121Google Scholar

    [16]

    Yan X B, Deng Z J, Tian X D, Wu J H 2019 Opt. Express 27 024393Google Scholar

    [17]

    He B, Yang L, Lin Q, Xiao M 2017 Phys. Rev. Lett. 118 233604Google Scholar

    [18]

    Li Y, Wu L A, Wang Z D 2011 Phys. Rev. A 83 043804Google Scholar

    [19]

    Deng Z J, Li Y, Gao M, Wu C W 2012 Phys. Rev. A 85 025804Google Scholar

    [20]

    Liu Y C, Wen H Y, Wei W C, Xiao Y F 2013 Chin. Phys. B 22 114213Google Scholar

    [21]

    Huang S M, Agarwal G S 2009 Phys. Rev. A 79 013821Google Scholar

    [22]

    Agarwal G S, Huang S M 2010 Phys. Rev. A 81 041803(R)Google Scholar

    [23]

    Shu J 2011 Chin. Phys. Lett. 28 104203Google Scholar

    [24]

    陈华俊, 米贤武 2011 物理学报 60 124206Google Scholar

    Chen H J, Mi X W 2011 Acta Phys. Sin. 60 124206Google Scholar

    [25]

    Han Y, Cheng J, Zhou L 2011 J. Phys. B 44 165505Google Scholar

    [26]

    Zhang J Q, Li Y, Feng M, Xu Y 2012 Phys. Rev. A 86 053806Google Scholar

    [27]

    Lü X Y, Zhang W M, Ashhab S, Wu Y, Nori F 2013 Sci. Rep. 3 2943Google Scholar

    [28]

    Zhou L, Cheng J, Han Y, Zhang W P 2013 Phys. Rev. A 88 063854Google Scholar

    [29]

    He B 2012 Phys. Rev. A 85 063820Google Scholar

    [30]

    Cao C, Mi S C, Gao Y P, He L Y, Yang D, Wang T J, Zhang R, Wang C 2016 Sci. Rep. 6 22920Google Scholar

    [31]

    Cao C, Mi S C, Wang T J, Zhang R, Wang C 2016 IEEE J. Quantum Electron. 52 1

    [32]

    Cao C, Chen X, Duan Y W, Fan L, Zhang R, Wang T J, Wang C 2017 Optik 130 659Google Scholar

    [33]

    Xiong X R, Gao Y P, Liu X F, Cao C, Wang T J, Wang C 2018 Sci. China-Phys. Mech. Astron. 61 090322Google Scholar

    [34]

    石海泉, 谢智强, 徐勋卫, 刘念华 2018 物理学报 67 044203Google Scholar

    Shi H Q, Xie Z Q, Xu X W, Liu N H 2018 Acta Phys. Sin. 67 044203Google Scholar

    [35]

    Manipatruni S, Robinson J T, Lipson M 2009 Phys. Rev. Lett. 102 213903Google Scholar

    [36]

    Hafezi M, Rabl P 2012 Opt. Express 20 7672Google Scholar

    [37]

    Wang Z, Shi L, Liu Y, Xu X, Zhang X 2015 Sci. Rep. 5 8657Google Scholar

    [38]

    Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, Dong C H 2016 Nat. Photonics 10 657Google Scholar

    [39]

    Peterson G A, Lecocq F, Cicak K, Simmonds R W, Aumentado J, Teufel J D 2017 Phys. Rev. X 7 031001

    [40]

    Barzanjeh S, Wulf M, Peruzzo M, Kalaee M, Dieterle P B, Painter O, Fink J M 2017 Nat. Commun. 8 953Google Scholar

    [41]

    Fang K, Luo J, Metelmann A, Matheny M H, Marquardt F, Clerk A A, Painter O 2017 Nat. Phys. 13 465Google Scholar

    [42]

    Maayani S, Dahan R, Kligerman Y, Moses E, Hassan A U, Jing H, Nori F, Christodoulides D N, Carmon T 2018 Nature (London) 558 569Google Scholar

    [43]

    Xu X W, Li Y 2015 Phys. Rev. A 91 053854Google Scholar

    [44]

    Xu X W, Li Y, Chen A X, Liu Y 2016 Phys. Rev. A 93 023827Google Scholar

    [45]

    Tian L, Li Z 2017 Phys. Rev. A 96 013808Google Scholar

    [46]

    Malz D, Tóth L D, Bernier N R, Feofanov A K, Kippenberg T J, Nunnenkamp A 2018 Phys. Rev. Lett. 120 023601Google Scholar

    [47]

    Jiang Y, Maayani S, Carmon T, Nori F, Jing H 2018 Phys. Rev. Applied 10 064037Google Scholar

    [48]

    Li Y, Huang Y Y, Zhang X Z, Tian L 2017 Opt. Express 25 18907Google Scholar

    [49]

    Huang R, Miranowicz A, Liao J Q, Nori F, Jing H 2018 Phys. Rev. Lett. 121 153601Google Scholar

    [50]

    Xu X W, Zhao Y J, Wang H, Jing H, Chen A X 2018 arXiv: 1809.07596

    [51]

    Lü H, Jiang Y, Wang Y Z, Jing H 2017 Photonics Res. 5 367Google Scholar

    [52]

    Habraken S J M, Stannigel K, Lukin M D, Zoller P, Rabl P 2012 New J. Phys. 14 115004Google Scholar

    [53]

    Seif A, DeGottardi W, Esfarjani K, Hafezi M 2018 Nat. Commun. 9 1207Google Scholar

    [54]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature (London) 452 72Google Scholar

    [55]

    Jayich A M, Sankey J C, Zwickl B M, Yang C, Thompson J D, Girvin S M, Clerk A A, Marquardt F, Harris J G E 2008 New J. Phys. 10 095008Google Scholar

    [56]

    Sankey J C, Yang C, Zwickl B M, Jayich A M, Harris J G E 2010 Nat. Phys. 6 707Google Scholar

    [57]

    Agarwal G S, Huang S 2014 New J. Phys. 16 033023Google Scholar

    [58]

    Yan X B, Cui C L, Gu K H, Tian X D, Fu C B, Wu J H 2014 Opt. Express 22 4886Google Scholar

    [59]

    DeJesus E X, Kaufman C 1987 Phys. Rev. A 35 5288Google Scholar

  • 图 1  双腔光力学系统示意图, 两光学腔通过光力相互作用与一个力学振子相耦合, 振幅为$\varepsilon_{\rm c}$$\varepsilon_{\rm d}$($\varepsilon_{\rm L}$$\varepsilon_{\rm R}$)的强耦合场 (探测场)分别从左右两侧驱动腔模$c_{1}$$c_{2}$, 同时两腔模之间存在线性耦合相互作用J

    Fig. 1.  A two-cavity optomechanical system with a mechanical resonator interacted with two cavities. Two strong coupling fields (probe fields) with amplitudes $\varepsilon_{\rm c}$ and $\varepsilon_{\rm d}$ ($\varepsilon_{\rm L}$ and $\varepsilon _{\rm R}$) are used to drive cavity $c_{1}$ and $c_{2}$ respectively. Meanwhile, the two cavities are linearly coupled to each other with coupling strength J

    图 2  传输振幅$T_{\rm {LR}}$(红线)和$T_{\rm {RL}}$(黑线)在不同力学振子耗散速率下随着标准化失谐$x/\kappa$的变化曲线 (a) $\gamma/\kappa$=1/100; (b) $\gamma/\kappa$=1/10; (c) $\gamma/\kappa$=1; (d) $\gamma/\kappa$=2; 其他参数: $\theta=-\dfrac{{\text{π}}}{2}$, $G =G_{+}$$J=J_{+}$(见(16)式)

    Fig. 2.  Transmission amplitudes $T_{\rm {LR}}$ (red line) and $T_{\rm {RL}}$ (black line) are plotted vs normalized detuning $x/\kappa$ for different cavity damping rate: (a) $\gamma/\kappa$=1/100; (b) $\gamma/\kappa$=1/10; (c) $\gamma/\kappa$=1; (d) $\gamma/\kappa$=2. Other parameters: $\theta=-\dfrac{{\text{π}}}{2}$, $G =G_{+}$ and $J=J_{+}$ according to Eq. (16)

    图 3  传输振幅$T_{\rm {LR}}$(红线)和$T_{\rm {RL}}$(黑线)在不同力学振子耗散速率下随着标准化失谐$x/\kappa$的变化曲线 (a) $\gamma/\kappa$=1/100; (b) $\gamma/\kappa$=1/10; (c) $\gamma/\kappa$=1; (d) $\gamma/\kappa$=10. 其他参数: $\theta=-\dfrac{{\text{π}}}{2}$, $G =G_{-}$$J=J_{-}$(见(16)式)

    Fig. 3.  Transmission amplitudes $T_{\rm {LR}}$ (red line) and $T_{\rm {RL}}$ (black line) are plotted vs normalized detuning $x/\kappa$ for different mechancial damping rate: (a) $\gamma/\kappa$=1/100; (b) $\gamma/\kappa$=1/10; (c) $\gamma/\kappa$=1; (d) $\gamma/\kappa$=10. Other parameters: $\theta=-\dfrac{{\text{π}}}{2}$, $G =G_{-}$ and $J=J_{-}$ according to Eq. (16)

    图 4  传输振幅$T_{\rm {LR}}$(红线)和$T_{\rm {RL}}$(黑线)在不同非互易相位差θ和耦合强度G时随着标准化失谐$x/\gamma$的变化曲线 (a) $\theta=-\dfrac{{\text{π}}}{4}$$G=G_{-}$; (b) $\theta=-\dfrac{{\text{π}}}{4}$$G=G_{+}$; (c) $\theta=-\dfrac{3{\text{π}}}{4}$$G=G_{-}$; (d) $\theta=-\dfrac{3{\text{π}}}{4}$$G=G_{+}$; 其他参数: $\gamma/\kappa=10^{-3}$, $J=J_{\pm}$$G=G_{\pm}$(见(19)式)

    Fig. 4.  Transmission amplitudes $T_{\rm {LR}}$ (red line) and $T_{\rm {RL}}$ (black line) are plotted vs normalized detuning $x/\gamma$ for different nonreciprocal phase θ and coupling strength G: (a) $\theta=-\dfrac{{\text{π}}}{4}$ and $G=G_{-}$; (b) $\theta=-\dfrac{{\text{π}}}{4}$ and $G=G_{+}$; (c) $\theta=-\dfrac{3{\text{π}}}{4}$ and $G=G_{-}$; (d) $\theta=-\dfrac{3{\text{π}}}{4}$ and $G=G_{+}$. Other parameters: $\gamma/\kappa=10^{-3}$, coupling strengths $J=J_{\pm}$ and $G=G_{\pm}$ according to Eq. (19)

  • [1]

    Jalas D, Petrov A, Eich M, et al. 2013 Nat. Photonics 7 579Google Scholar

    [2]

    Aplet L J, Carson J W 1964 Appl. Opt. 3 544Google Scholar

    [3]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [4]

    陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 物理学报 64 164211Google Scholar

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211Google Scholar

    [5]

    陈华俊, 方贤文, 陈昌兆, 李洋 2016 物理学报 65 194205Google Scholar

    Chen H J, Fang X W, Chen C Z, Li Y 2016 Acta Phys. Sin. 65 194205Google Scholar

    [6]

    严晓波, 杨柳, 田雪冬, 刘一谋, 张岩 2014 物理学报 63 204201Google Scholar

    Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201Google Scholar

    [7]

    班章, 梁静秋, 吕金光, 梁中翥, 冯思悦 2018 物理学报 67 070701Google Scholar

    Zhang B, Liang J Q, Lü J G, Liang Z Z, Feng S Y 2018 Acta Phys. Sin. 67 070701Google Scholar

    [8]

    Chen R X, Shen L T, Yang Z B, Wu H Z, Zheng S B 2014 Phys. Rev. A 89 023843Google Scholar

    [9]

    Liao J Q, Wu Q Q, Nori F 2014 Phys. Rev. A 89 014302Google Scholar

    [10]

    Yan X B 2017 Phys. Rev. A 96 053831Google Scholar

    [11]

    He Q Y, Ficek Z 2014 Phys. Rev. A 89 022332Google Scholar

    [12]

    张秀龙, 鲍倩倩, 杨明珠, 田雪松 2018 物理学报 67 104203Google Scholar

    Zhang X L, Bao Q Q, Yang M Z, Tian X S 2018 Acta Phys. Sin. 67 104203Google Scholar

    [13]

    Kiesewetter S, He Q Y, Drummond P D, Reid M D 2014 Phys. Rev. A 90 043805Google Scholar

    [14]

    Lin Q, He B, Ghobadi R, Simon C 2014 Phys. Rev. A 90 022309Google Scholar

    [15]

    He Q Y, Reid M D 2013 Phys. Rev. A 88 052121Google Scholar

    [16]

    Yan X B, Deng Z J, Tian X D, Wu J H 2019 Opt. Express 27 024393Google Scholar

    [17]

    He B, Yang L, Lin Q, Xiao M 2017 Phys. Rev. Lett. 118 233604Google Scholar

    [18]

    Li Y, Wu L A, Wang Z D 2011 Phys. Rev. A 83 043804Google Scholar

    [19]

    Deng Z J, Li Y, Gao M, Wu C W 2012 Phys. Rev. A 85 025804Google Scholar

    [20]

    Liu Y C, Wen H Y, Wei W C, Xiao Y F 2013 Chin. Phys. B 22 114213Google Scholar

    [21]

    Huang S M, Agarwal G S 2009 Phys. Rev. A 79 013821Google Scholar

    [22]

    Agarwal G S, Huang S M 2010 Phys. Rev. A 81 041803(R)Google Scholar

    [23]

    Shu J 2011 Chin. Phys. Lett. 28 104203Google Scholar

    [24]

    陈华俊, 米贤武 2011 物理学报 60 124206Google Scholar

    Chen H J, Mi X W 2011 Acta Phys. Sin. 60 124206Google Scholar

    [25]

    Han Y, Cheng J, Zhou L 2011 J. Phys. B 44 165505Google Scholar

    [26]

    Zhang J Q, Li Y, Feng M, Xu Y 2012 Phys. Rev. A 86 053806Google Scholar

    [27]

    Lü X Y, Zhang W M, Ashhab S, Wu Y, Nori F 2013 Sci. Rep. 3 2943Google Scholar

    [28]

    Zhou L, Cheng J, Han Y, Zhang W P 2013 Phys. Rev. A 88 063854Google Scholar

    [29]

    He B 2012 Phys. Rev. A 85 063820Google Scholar

    [30]

    Cao C, Mi S C, Gao Y P, He L Y, Yang D, Wang T J, Zhang R, Wang C 2016 Sci. Rep. 6 22920Google Scholar

    [31]

    Cao C, Mi S C, Wang T J, Zhang R, Wang C 2016 IEEE J. Quantum Electron. 52 1

    [32]

    Cao C, Chen X, Duan Y W, Fan L, Zhang R, Wang T J, Wang C 2017 Optik 130 659Google Scholar

    [33]

    Xiong X R, Gao Y P, Liu X F, Cao C, Wang T J, Wang C 2018 Sci. China-Phys. Mech. Astron. 61 090322Google Scholar

    [34]

    石海泉, 谢智强, 徐勋卫, 刘念华 2018 物理学报 67 044203Google Scholar

    Shi H Q, Xie Z Q, Xu X W, Liu N H 2018 Acta Phys. Sin. 67 044203Google Scholar

    [35]

    Manipatruni S, Robinson J T, Lipson M 2009 Phys. Rev. Lett. 102 213903Google Scholar

    [36]

    Hafezi M, Rabl P 2012 Opt. Express 20 7672Google Scholar

    [37]

    Wang Z, Shi L, Liu Y, Xu X, Zhang X 2015 Sci. Rep. 5 8657Google Scholar

    [38]

    Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, Dong C H 2016 Nat. Photonics 10 657Google Scholar

    [39]

    Peterson G A, Lecocq F, Cicak K, Simmonds R W, Aumentado J, Teufel J D 2017 Phys. Rev. X 7 031001

    [40]

    Barzanjeh S, Wulf M, Peruzzo M, Kalaee M, Dieterle P B, Painter O, Fink J M 2017 Nat. Commun. 8 953Google Scholar

    [41]

    Fang K, Luo J, Metelmann A, Matheny M H, Marquardt F, Clerk A A, Painter O 2017 Nat. Phys. 13 465Google Scholar

    [42]

    Maayani S, Dahan R, Kligerman Y, Moses E, Hassan A U, Jing H, Nori F, Christodoulides D N, Carmon T 2018 Nature (London) 558 569Google Scholar

    [43]

    Xu X W, Li Y 2015 Phys. Rev. A 91 053854Google Scholar

    [44]

    Xu X W, Li Y, Chen A X, Liu Y 2016 Phys. Rev. A 93 023827Google Scholar

    [45]

    Tian L, Li Z 2017 Phys. Rev. A 96 013808Google Scholar

    [46]

    Malz D, Tóth L D, Bernier N R, Feofanov A K, Kippenberg T J, Nunnenkamp A 2018 Phys. Rev. Lett. 120 023601Google Scholar

    [47]

    Jiang Y, Maayani S, Carmon T, Nori F, Jing H 2018 Phys. Rev. Applied 10 064037Google Scholar

    [48]

    Li Y, Huang Y Y, Zhang X Z, Tian L 2017 Opt. Express 25 18907Google Scholar

    [49]

    Huang R, Miranowicz A, Liao J Q, Nori F, Jing H 2018 Phys. Rev. Lett. 121 153601Google Scholar

    [50]

    Xu X W, Zhao Y J, Wang H, Jing H, Chen A X 2018 arXiv: 1809.07596

    [51]

    Lü H, Jiang Y, Wang Y Z, Jing H 2017 Photonics Res. 5 367Google Scholar

    [52]

    Habraken S J M, Stannigel K, Lukin M D, Zoller P, Rabl P 2012 New J. Phys. 14 115004Google Scholar

    [53]

    Seif A, DeGottardi W, Esfarjani K, Hafezi M 2018 Nat. Commun. 9 1207Google Scholar

    [54]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature (London) 452 72Google Scholar

    [55]

    Jayich A M, Sankey J C, Zwickl B M, Yang C, Thompson J D, Girvin S M, Clerk A A, Marquardt F, Harris J G E 2008 New J. Phys. 10 095008Google Scholar

    [56]

    Sankey J C, Yang C, Zwickl B M, Jayich A M, Harris J G E 2010 Nat. Phys. 6 707Google Scholar

    [57]

    Agarwal G S, Huang S 2014 New J. Phys. 16 033023Google Scholar

    [58]

    Yan X B, Cui C L, Gu K H, Tian X D, Fu C B, Wu J H 2014 Opt. Express 22 4886Google Scholar

    [59]

    DeJesus E X, Kaufman C 1987 Phys. Rev. A 35 5288Google Scholar

  • [1] 冉冲冲, 吴鸣杰, 曾永灿, 吴正茂, 杨俊波, 吴加贵. 基于改进遗传算法设计的超紧凑型片上硅光隔离器. 物理学报, 2025, 74(4): 1-9. doi: 10.7498/aps.74.20241228
    [2] 李观荣, 郑怡婷, 徐琼怡, 裴笑山, 耿玥, 严冬, 杨红. 闭合回路相干增益原子系统中完美非互易反射光放大. 物理学报, 2024, 73(12): 126401. doi: 10.7498/aps.73.20240347
    [3] 刘妮, 马硕, 梁九卿. 双腔双光力系统中的光非互易传输特性. 物理学报, 2023, 72(6): 060702. doi: 10.7498/aps.72.20222246
    [4] 谢宝豪, 陈华俊, 孙轶. 多模光力系统中光力诱导透明引起的慢光效应. 物理学报, 2023, 72(15): 154203. doi: 10.7498/aps.72.20230663
    [5] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [6] 李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东. 基于光学非互易的双路多信道全光操控. 物理学报, 2022, 71(18): 184202. doi: 10.7498/aps.71.20220506
    [7] 刘妮, 张小芳, 梁九卿. 双光腔光机械系统的动力学相变和选择性能量交换. 物理学报, 2021, 70(14): 140301. doi: 10.7498/aps.70.20210178
    [8] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计. 物理学报, 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [9] 李森, 李浩珍, 许静平, 朱成杰, 羊亚平. 基于腔光力学系统的全光三极管的压缩特性. 物理学报, 2019, 68(17): 174202. doi: 10.7498/aps.68.20190078
    [10] 张秀龙, 鲍倩倩, 杨明珠, 田雪松. 双腔光力学系统中输出光场纠缠特性的研究. 物理学报, 2018, 67(10): 104203. doi: 10.7498/aps.67.20172467
    [11] 陈华俊, 方贤文, 陈昌兆, 李洋. 基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感. 物理学报, 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [12] 钟东洲, 计永强, 邓涛, 周开利. 电光调制对外部光注入垂直腔表面发射激光器的偏振转换及其非线性动力学行为的操控性研究. 物理学报, 2015, 64(11): 114203. doi: 10.7498/aps.64.114203
    [13] 陈雪, 刘晓威, 张可烨, 袁春华, 张卫平. 腔光力学系统中的量子测量. 物理学报, 2015, 64(16): 164211. doi: 10.7498/aps.64.164211
    [14] 王小发, 李骏. 短外腔偏振旋转光反馈下1550 nm垂直腔面发射激光器的动力学特性研究. 物理学报, 2014, 63(1): 014203. doi: 10.7498/aps.63.014203
    [15] 郭泽彬, 唐军, 刘俊, 王明焕, 商成龙, 雷龙海, 薛晨阳, 张文栋, 闫树斌. 锥形光纤激发盘腔光学模式互易性研究. 物理学报, 2014, 63(22): 227802. doi: 10.7498/aps.63.227802
    [16] 曾维友, 谢 康, 姜海明, 陈 凯. 基于TE-TM模变换的新型相位自补偿磁光隔离器. 物理学报, 2008, 57(6): 3607-3612. doi: 10.7498/aps.57.3607
    [17] 李国俊, 康学亮, 李永平, 吕 超, 范正修, 丁 磊, 隋 展. 反射型磁光多层膜隔离器的频率响应及宽容性研究. 物理学报, 2007, 56(5): 2945-2950. doi: 10.7498/aps.56.2945
    [18] 温晓文, 李国俊, 仇高新, 李永平, 丁 磊, 隋 展. 反射型磁光多层膜隔离器工作稳定性的研究. 物理学报, 2005, 54(4): 1847-1853. doi: 10.7498/aps.54.1847
    [19] 温晓文, 李国俊, 仇高新, 李永平, 丁 磊, 隋 展. 多缺陷结构的一维磁光多层膜隔离器. 物理学报, 2004, 53(10): 3571-3576. doi: 10.7498/aps.53.3571
    [20] 叶碧青, 马忠林. 激光谐振腔内光学元件的热光效应. 物理学报, 1980, 29(6): 756-763. doi: 10.7498/aps.29.756
计量
  • 文章访问数:  9665
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-16
  • 修回日期:  2019-05-19
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回