搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽频带压缩态光场光学参量腔的设计

王俊萍 张文慧 李瑞鑫 田龙 王雅君 郑耀辉

引用本文:
Citation:

宽频带压缩态光场光学参量腔的设计

王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉

Design of optical parametric cavity for broadband squeezed light field

Wang Jun-Ping, Zhang Wen-Hui, Li Rui-Xin, Tian Long, Wang Ya-Jun, Zheng Yao-Hui
PDF
HTML
导出引用
  • 压缩态光场是量子光学研究中的一种重要量子资源. 在量子信息应用中, 压缩态光场的频谱带宽是限制信息传输容量的重要指标. 目前, 光学参量振荡器是产生强压缩度非经典光场最有效的方法之一. 本文通过分析输出耦合镜透射率、线宽、阈值功率对简并光学参量振荡器频谱带宽的影响, 实验完成了低阈值(18 mW)、宽频带(84.2 MHz)、高稳定(锁定基线标准偏差为0.32 MHz)量子压缩器的设计. 结果表明, 相比单共振光学参量振荡器, 双共振腔型具有低阈值、高稳定的特点, 更适合于宽频带压缩态光场的制备与实际应用.
    The field of squeezed state is an important quantum resource in the study of quantum optics. In the application of quantum information, the spectrum bandwidth of the squeezed light field is an important index to limit the information transmission capacity. Currently, the optical parametric oscillator (OPO) is one of the most efficient ways to generate high squeezed non-classical optical fields. In this paper, the degenerate singly-resonant and doubly-resonant OPO structures are introduced. Both OPOs are composed of concave mirrors and periodically poled potassium titanyl phosphate crystals (PPKTP). The length of PPKTP crystal is 10 mm. The curvature radius of the curved surface is 12 mm, and it has high reflectivity at 1550 nm and 775 nm. The plane surface is coated with anti-reflection coating. The air gap length is 21 mm. The concave mirror is an output coupling mirror, and its radius of curvature is 25 mm. In the singly-resonant OPO, only the signal light resonates in the cavity, and the pump light passes through the nonlinear crystal twice and then outputs out of the cavity. The reflectivity of OPO output coupling mirror to the wavelength of 1550 nm is 88%. The linewidth of the corresponding fundamental frequency wave is 77.4 MHz. For doubly-resonant OPO, both the signal light and the pump light resonate simultaneously in the cavity. The reflectivity of OPO output coupling mirror to 1550 nm and 775 nm is 85% and 97.5%, respectively. The linewidth of the corresponding fundamental frequency wave and harmonic is 97.1 MHz and 15.6 MHz, respectively. Then the threshold of OPO is calculated. The threshold pump power of OPO increases with signal light transmittance increasing, but the threshold value of doubly-resonant OPO is obviously smaller than that of singly-resonant OPO. After that, the variation of the squeezing bandwidth of the squeezed light field generated by OPO with the transmittance of the signal is analyzed. Finally, we complete the design of quantum squeezer with low threshold (18 mW), broadband (84.2 MHz) and high stability (the standard deviation of locking baseline is 0.32 MHz) experimentally. The results show that compared with the singly-resonant optical parametric oscillator, the doubly-resonant cavity has the characteristics of low threshold and high stability, which is more suitable for the preparation and practical application of broadband squeezed light field.
      通信作者: 王雅君, wangyajun_166@163.com
    • 基金项目: 国家自然科学基金(批准号: 62027821, 11654002, 11874250, 11804207)、国家重点研发计划(批准号: 2016YFA0301401)、山西省三晋学者特聘教授项目、山西省重点研发计划(批准号: 201903D111001)、山西省“1331”重点建设学科和山西省高等学校中青年拔尖创新人才计划资助的课题
      Corresponding author: Wang Ya-Jun, wangyajun_166@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62027821, 11654002, 11874250, 11804207), the National Key Research and Development Program of China (Grant No. 2016YFA0301401), the Program for Sanjin Scholar of Shanxi Province, the Key Research and Development (R&D) Projects of Shanxi Province, China (Grant No. 201903D111001), the Shanxi “1331 Project”, China, and the Program for Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China
    [1]

    Grote H, Danzmann K, Dooley K L, Schnabel R, Slutsky J, Vahlbruch H 2013 Phys. Rev. Lett. 110 181101Google Scholar

    [2]

    Oelker E, Mansell G, Tse M, Miller J, Matichard F, Barsotti L, Fritschel P, McClelland D E, Evans M, Mavalvala N 2016 Optica 3 682Google Scholar

    [3]

    成健, 冯晋霞, 李渊骥, 张宽收 2018 物理学报 67 244202Google Scholar

    Cheng J, Feng J X, Li Y J, Zhang K S 2018 Acta Phys. Sin. 67 244202Google Scholar

    [4]

    冯晋霞, 杜京师, 靳晓丽, 李渊骥, 张宽收 2018 物理学报 67 174203Google Scholar

    Feng J X, Du J S, Jin X L, Li Y J, Zhang K S 2018 Acta Phys. Sin. 67 174203Google Scholar

    [5]

    Su X L, Tian C X, Deng X W, Li Q, Xie C D, Peng K C 2016 Phys. Rev. Lett. 117 240503Google Scholar

    [6]

    Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2018 Sci. Adv. 4 eaas9401Google Scholar

    [7]

    聂敏, 张怡心, 杨光, 张美玲, 孙爱晶, 裴昌幸 2019 量子光学学报 25 395Google Scholar

    Nie M, Zhang Y X, Yang G, Zhang M L, Sun A J, Pei C X 2019 Acta Sin. Quantum Opt. 25 395Google Scholar

    [8]

    Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Lett. 43 5411Google Scholar

    [9]

    聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收 2020 物理学报 69 094205Google Scholar

    Nie D D, Feng J X, Qi M, Li Y J, Zhang K S 2020 Acta Phys. Sin. 69 094205Google Scholar

    [10]

    万振菊, 冯晋霞, 成健, 张宽收 2018 物理学报 67 024203Google Scholar

    Wan Z J, Feng J X, Cheng J, Zhang K S 2018 Acta Phys. Sin. 67 024203Google Scholar

    [11]

    常彦红, 刘阿鹏 2019 量子光学学报 25 297Google Scholar

    Chang Y H, Liu A P 2019 Acta Sin. Quantum Opt. 25 297Google Scholar

    [12]

    余胜, 刘焕章, 刘胜帅, 荆杰泰 2020 物理学报 69 090303Google Scholar

    Yu S, Liu H Z, Liu S S, Jing J T 2020 Acta Phys. Sin. 69 090303Google Scholar

    [13]

    Lloyd S 2008 Science 321 1463Google Scholar

    [14]

    Zhang Z S, Mouradian S, Wong F N C, Shapiro J H 2015 Phys. Rev. Lett. 114 110506Google Scholar

    [15]

    Zhang Z S, Tengner M, Zhong T, Wong F N C, Shapiro J H 2013 Phys. Rev. Lett. 111 010501Google Scholar

    [16]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar

    [17]

    Rihan A, Andrieux E, Zanon-Willette T, Briaudeau S, Himbert M, Zondy J J 2011 Appl. Phys. B 102 367

    [18]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [19]

    Zhang W H, Wang J R, Zheng Y H, Wang Y J, Peng K C 2019 Appl. Phys. Lett. 115 171103Google Scholar

    [20]

    Schönbeck A, Thies F, Schnabel R 2018 Opt. Lett. 43 110Google Scholar

    [21]

    Mehmet M, Vahlbruch H, Lastzka N, Danzmann K, Schnabel R 2010 Phys. Rev. A 81 013814Google Scholar

    [22]

    Ast S, Mehmet M, Schnabel R 2013 Opt. Express 21 13572Google Scholar

    [23]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321Google Scholar

    [24]

    Samblowski A 2012 Ph. D. Dissertation (Hannover: Leibniz Universität Hannover)

    [25]

    Emanueli S, Arie A 2003 Appl. Opt. 42 6661Google Scholar

    [26]

    Vanherzeele H, Bierlein J D 1992 Opt. Lett. 17 982Google Scholar

    [27]

    Schiller S, Schneider K, Mlynek J 1999 J. Opt. Soc. Am. B 16 1512Google Scholar

    [28]

    Martinelli M, Zhang K S, Coudreau T, Maître A, Fabre C 2001 J. Opt. A: Pure Appl. Opt. 3 300Google Scholar

    [29]

    贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂 2018 物理学报 67 104207Google Scholar

    Jia M Y, Zhao G, Zhou Y T, Liu J X, Gou S J, Wu Y Q, Ma W G, Zhang L, Dong L, Yi W B, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 104207Google Scholar

    [30]

    张宏宇, 王锦荣, 李庆回, 吉宇杰, 贺子洋, 杨荣草, 田龙 2019 量子光学学报 25 456Google Scholar

    Zhang H Y, Wang J R, Li Q H, Ji Y J, He Z Y, Yang R C, Tian L 2019 Acta Sin. Quantum Opt. 25 456Google Scholar

  • 图 1  OPO结构示意图 (a)单共振OPO; (b)双共振OPO

    Fig. 1.  Schematic diagram of OPO structure: (a) Singly-resonant OPO; (b) doubly-resonant OPO.

    图 2  OPO阈值${P_{{\rm{th}}}}$随信号光透射率${T_{\rm{s}}}$变化图

    Fig. 2.  Diagram of the change of OPO threshold ${P_{{\rm{th}}}}$ with the transmittance of signal light ${T_{\rm{s}}}$.

    图 3  压缩带宽、OPO信号光线宽、压缩度随${T_{\rm{s}}}$变化图

    Fig. 3.  Diagram of squeezing bandwidth, signal light linewidth of OPO and squeezing degree changing with ${T_{\rm{s}}}$.

    图 4  实验装置图

    Fig. 4.  Diagram of experimental set-up.

    图 5  OPO信号光的透射峰 (a)单共振OPO的透射峰; (b)双共振OPO的透射峰

    Fig. 5.  The transmission peaks of OPO signal light: (a) The transmission peaks of singly-resonant OPO; (b) the transmission peaks of doubly-resonant OPO.

    图 6  OPO的压缩带宽实验结果图

    Fig. 6.  Experimental results of OPO squeezing bandwidth.

    图 7  OPO的误差信号频率分布统计图 (a)单共振OPO; (b)双共振OPO

    Fig. 7.  Statistical graph of frequency distribution of error signal of OPO: (a) Singly-resonant OPO; (b) doubly-resonant OPO.

  • [1]

    Grote H, Danzmann K, Dooley K L, Schnabel R, Slutsky J, Vahlbruch H 2013 Phys. Rev. Lett. 110 181101Google Scholar

    [2]

    Oelker E, Mansell G, Tse M, Miller J, Matichard F, Barsotti L, Fritschel P, McClelland D E, Evans M, Mavalvala N 2016 Optica 3 682Google Scholar

    [3]

    成健, 冯晋霞, 李渊骥, 张宽收 2018 物理学报 67 244202Google Scholar

    Cheng J, Feng J X, Li Y J, Zhang K S 2018 Acta Phys. Sin. 67 244202Google Scholar

    [4]

    冯晋霞, 杜京师, 靳晓丽, 李渊骥, 张宽收 2018 物理学报 67 174203Google Scholar

    Feng J X, Du J S, Jin X L, Li Y J, Zhang K S 2018 Acta Phys. Sin. 67 174203Google Scholar

    [5]

    Su X L, Tian C X, Deng X W, Li Q, Xie C D, Peng K C 2016 Phys. Rev. Lett. 117 240503Google Scholar

    [6]

    Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2018 Sci. Adv. 4 eaas9401Google Scholar

    [7]

    聂敏, 张怡心, 杨光, 张美玲, 孙爱晶, 裴昌幸 2019 量子光学学报 25 395Google Scholar

    Nie M, Zhang Y X, Yang G, Zhang M L, Sun A J, Pei C X 2019 Acta Sin. Quantum Opt. 25 395Google Scholar

    [8]

    Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Lett. 43 5411Google Scholar

    [9]

    聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收 2020 物理学报 69 094205Google Scholar

    Nie D D, Feng J X, Qi M, Li Y J, Zhang K S 2020 Acta Phys. Sin. 69 094205Google Scholar

    [10]

    万振菊, 冯晋霞, 成健, 张宽收 2018 物理学报 67 024203Google Scholar

    Wan Z J, Feng J X, Cheng J, Zhang K S 2018 Acta Phys. Sin. 67 024203Google Scholar

    [11]

    常彦红, 刘阿鹏 2019 量子光学学报 25 297Google Scholar

    Chang Y H, Liu A P 2019 Acta Sin. Quantum Opt. 25 297Google Scholar

    [12]

    余胜, 刘焕章, 刘胜帅, 荆杰泰 2020 物理学报 69 090303Google Scholar

    Yu S, Liu H Z, Liu S S, Jing J T 2020 Acta Phys. Sin. 69 090303Google Scholar

    [13]

    Lloyd S 2008 Science 321 1463Google Scholar

    [14]

    Zhang Z S, Mouradian S, Wong F N C, Shapiro J H 2015 Phys. Rev. Lett. 114 110506Google Scholar

    [15]

    Zhang Z S, Tengner M, Zhong T, Wong F N C, Shapiro J H 2013 Phys. Rev. Lett. 111 010501Google Scholar

    [16]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar

    [17]

    Rihan A, Andrieux E, Zanon-Willette T, Briaudeau S, Himbert M, Zondy J J 2011 Appl. Phys. B 102 367

    [18]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [19]

    Zhang W H, Wang J R, Zheng Y H, Wang Y J, Peng K C 2019 Appl. Phys. Lett. 115 171103Google Scholar

    [20]

    Schönbeck A, Thies F, Schnabel R 2018 Opt. Lett. 43 110Google Scholar

    [21]

    Mehmet M, Vahlbruch H, Lastzka N, Danzmann K, Schnabel R 2010 Phys. Rev. A 81 013814Google Scholar

    [22]

    Ast S, Mehmet M, Schnabel R 2013 Opt. Express 21 13572Google Scholar

    [23]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321Google Scholar

    [24]

    Samblowski A 2012 Ph. D. Dissertation (Hannover: Leibniz Universität Hannover)

    [25]

    Emanueli S, Arie A 2003 Appl. Opt. 42 6661Google Scholar

    [26]

    Vanherzeele H, Bierlein J D 1992 Opt. Lett. 17 982Google Scholar

    [27]

    Schiller S, Schneider K, Mlynek J 1999 J. Opt. Soc. Am. B 16 1512Google Scholar

    [28]

    Martinelli M, Zhang K S, Coudreau T, Maître A, Fabre C 2001 J. Opt. A: Pure Appl. Opt. 3 300Google Scholar

    [29]

    贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂 2018 物理学报 67 104207Google Scholar

    Jia M Y, Zhao G, Zhou Y T, Liu J X, Gou S J, Wu Y Q, Ma W G, Zhang L, Dong L, Yi W B, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 104207Google Scholar

    [30]

    张宏宇, 王锦荣, 李庆回, 吉宇杰, 贺子洋, 杨荣草, 田龙 2019 量子光学学报 25 456Google Scholar

    Zhang H Y, Wang J R, Li Q H, Ji Y J, He Z Y, Yang R C, Tian L 2019 Acta Sin. Quantum Opt. 25 456Google Scholar

  • [1] 姚晓岱, 吴爽, 赵锐, 吴淼鑫, 刘航, 金光勇, 于永吉. 基于台阶声光调Q外腔泵浦MgO:PPLN光参量振荡器的3.4 μm中红外脉冲串激光器. 物理学报, 2024, 73(4): 044206. doi: 10.7498/aps.73.20231348
    [2] 刘婷婷, 杨晓华, 韩亚帅, 王军民. 基于相干反馈的相敏放大器强度差压缩增强研究. 物理学报, 2024, 73(13): 134203. doi: 10.7498/aps.73.20240407
    [3] 孙小聪, 李卫, 王雅君, 郑耀辉. 基于压缩态光场的量子增强型光学相位追踪. 物理学报, 2024, 73(5): 054203. doi: 10.7498/aps.73.20231835
    [4] 韩亚帅, 张啸, 张昭, 屈军, 王军民. 基于级联光参量放大器的碱金属原子跃迁线波段压缩光源分析. 物理学报, 2022, 71(7): 074202. doi: 10.7498/aps.71.20212131
    [5] 李庆回, 姚文秀, 李番, 田龙, 王雅君, 郑耀辉. 明亮压缩态光场的操控及量子层析. 物理学报, 2021, 70(15): 154203. doi: 10.7498/aps.70.20210318
    [6] 冯晋霞, 杜京师, 靳晓丽, 李渊骥, 张宽收. 音频段1.34 μm压缩态光场的实验制备. 物理学报, 2018, 67(17): 174203. doi: 10.7498/aps.67.20180301
    [7] 刘增俊, 翟泽辉, 孙恒信, 郜江瑞. 低频压缩态光场的制备. 物理学报, 2016, 65(6): 060401. doi: 10.7498/aps.65.060401
    [8] 葛烨, 胡以华, 舒嵘, 洪光烈. 一种新型的用于差分吸收激光雷达中脉冲式光学参量振荡器的种子激光器的频率稳定方法. 物理学报, 2015, 64(2): 020702. doi: 10.7498/aps.64.020702
    [9] 郭靖, 何广源, 焦中兴, 王彪. 高效率内腔式2 μm简并光学参量振荡器. 物理学报, 2015, 64(8): 084207. doi: 10.7498/aps.64.084207
    [10] 张丽梦, 胡明列, 顾澄琳, 范锦涛, 王清月. 高功率, 红光至中红外可调谐腔内和频光学参量振荡器. 物理学报, 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [11] 张岩, 于旭东, 邸克, 李卫, 张靖. 压缩态光场平衡零拍探测的位相锁定. 物理学报, 2013, 62(8): 084204. doi: 10.7498/aps.62.084204
    [12] 冯秀琴, 姚治海, 田作林, 韩秀宇. 简并光学参量振荡器的超混沌控制与周期态同步. 物理学报, 2010, 59(12): 8414-8419. doi: 10.7498/aps.59.8414
    [13] 叶晨光, 张 靖. 利用PPKTP晶体产生真空压缩态及其Wigner准概率分布函数的量子重构. 物理学报, 2008, 57(11): 6962-6967. doi: 10.7498/aps.57.6962
    [14] 张百钢, 姚建铨, 路 洋, 纪 峰, 张铁犁, 徐德刚, 王 鹏, 徐可欣. 抽运光角度调谐准相位匹配光学参量振荡器的研究. 物理学报, 2006, 55(3): 1231-1236. doi: 10.7498/aps.55.1231
    [15] 李永民, 吴迎瑞, 张宽收, 彭墀. 利用准相位匹配光学参量振荡器获得可调谐强度差压缩光. 物理学报, 2003, 52(4): 849-852. doi: 10.7498/aps.52.849
    [16] 李永民, 樊巧云, 张宽收, 谢常德, 彭堃墀. 三共振准相位匹配光学参量振荡器反射抽运场的正交位相压缩. 物理学报, 2001, 50(8): 1492-1495. doi: 10.7498/aps.50.1492
    [17] 冯勋立, 徐至展, 夏宇兴. 压缩真空态光场抽运的双光子激光. 物理学报, 2000, 49(2): 235-240. doi: 10.7498/aps.49.235
    [18] 张俊香, 贺凌翔, 张天才, 谢常德, 彭昆墀. 压缩态光场的四阶量子干涉. 物理学报, 1999, 48(7): 1230-1235. doi: 10.7498/aps.48.1230
    [19] 彭堃墀, 黄茂全, 刘晶, 廉毅敏, 张天才, 于辰, 谢常德, 郭光灿. 双模光场压缩态的实验研究. 物理学报, 1993, 42(7): 1079-1085. doi: 10.7498/aps.42.1079
    [20] 郭光灿, 柴金华. 光泵三能级原子体系产生光子数压缩态. 物理学报, 1991, 40(6): 912-922. doi: 10.7498/aps.40.912
计量
  • 文章访问数:  7576
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-11
  • 修回日期:  2020-07-08
  • 上网日期:  2020-11-28
  • 刊出日期:  2020-12-05

/

返回文章
返回