搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超聚束压缩热态与压缩数态光场的高阶相干性

何力 赵洁 李红宇 郭晓敏 郭龑强

引用本文:
Citation:

超聚束压缩热态与压缩数态光场的高阶相干性

何力, 赵洁, 李红宇, 郭晓敏, 郭龑强

High-order coherence of super-bunching squeezed thermal states and squeezed number states of light fields

HE Li, ZHAO Jie, LI Hongyu, GUO Xiaomin, GUO Yanqiang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 光场的聚束和反聚束效应反映了光子的时空关联性, 是判别量子统计经典性与非经典性的关键指标, 在量子信息处理和精密测量中发挥着重要作用. 本文基于多级联Hanbury Brown-Twiss单光子探测方案研究了压缩热态与压缩数态光场全时延高阶相干函数$ {g^{(n)}} $的超聚束与反聚束效应. 分析了不同压缩参数$ r $、平均光子数$ \alpha $和压缩光子数$ n $条件下, 压缩热态与压缩数态光场的高阶相干性, 结果表明压缩热态光场具有显著的超聚束效应, 最大超聚束值为$ {g^{({5})}} $= 2.24 × 1014; 而压缩数态光场呈明显的反聚束特性, 最小反聚束值为$ {g^{({5})}} $ = 9.39 × 10–6. 并考虑实验条件下背景噪声$\gamma $和探测效率$\eta $的影响, 在探测效率较低、背景噪声较大的情况下, 平均光子数$ \alpha $较小的压缩热态光场仍可保持良好的超聚束特性, 当平均光子数$ \alpha $ = 0.5时, 通过调控压缩度$ S $, 最大超聚束值为$ {g^{({4})}} $ = 42.60. 另外, 通过调控压缩数态光场的压缩光子数$ n $和压缩度$ S $, 可实现高阶相干函数从反聚束到超聚束效应的连续大范围变化, 且其高阶相干度对环境噪声与探测效率有较强的鲁棒性. 进而研究了压缩热态光场在全时延条件下, 尤其是在相干时间范围内的高阶相干函数的变化特性, 其高阶相干度$ {g^{(n)}} $显著高于经典热态光场. 上述研究结果表明, 压缩热态光场的高阶光子超聚束特性, 及压缩数态光场的高阶相干度大范围连续可调性, 有助于高效量子态的制备调控与高分辨量子成像.
    The bunching and antibunching effects of light fields reflect the spatiotemporal correlation of photons and are key indicators for distinguishing classical and non-classical quantum statistics. They play a crucial role in quantum information processing and precise measurement. In this paper, we investigate the super-bunching and antibunching effects of the full-time-delay higher-order coherence function $ {g^{(n)}} $ for squeezed thermal states and squeezed number states based on a multi-cascaded Hanbury Brown–Twiss single-photon detection scheme.Under ideal conditions, the high-order coherence of squeezed thermal states and squeezed number states is analyzed by changing compression parameter $ r $, average photon number $ \alpha $, and squeezed photon number $ n $. The results indicate that when the compression parameter $ r $∈[0, 1], the squeezed thermal state exhibits a significant super-bunching effect, with super-bunching values of each order being $ {g^{({2})}} $ = 9.98 × 105, $ {g^{({3})}} $ = 8.98 × 106, $ {g^{({4})}} $ = 8.96 × 1012, $ {g^{({5})}} $ = 2.24 × 1014. The squeezed number state exhibits a continuous transition from antibunching to bunching behavior, with coherence degrees of different orders being $ {g^{({2})}} $∈[1.60 × 10–5, 1.09], $ {g^{({3})}} $∈[9.02 × 10–6, 1.16], $ {g^{({4})}} $∈[4.75 × 10–6, 1.22], and $ {g^{({5})}} $∈[9.39 × 10–6, 1.30]).Simultaneously, this study analyzes the high-order photon coherence of squeezed thermal states and squeezed number states under experimental conditions, with background noise $\gamma $ and detection efficiency $\eta $ taken into account. When detection efficiency is relatively low and background noise is substantial, the higher-order coherence of squeezed thermal states with smaller average photon number $ \alpha $ is disturbed by background noise, but still maintains good super-bunching characteristics. However, when the average photon number $ \alpha $ becomes large, which is limited by the dead time of single-photon detector, it is challenging to accurately obtain all the information about the squeezed number state light field, leading measurement results to deviate from the ideal values. When the average photon number is $ \alpha $ = 0.5, the super-bunching effects reach their maximum values of $ {g^{({2})}} $ = 2.149, $ {g^{({3})}} $ = 6.389和$ {g^{({4})}} $ = 23.228, corresponding to the squeezing degrees $ {S^{({2})}} $ = 5.47, $ {S^{(3)}} $ = 4.86 and = 4.43, respectively. Furthermore, by adjusting the number of squeezed photons $ n $ and the squeezing degree of the squeezed number state light field, $S$, a continuous and wide-ranging change of high-order coherence function can be achieved, transforming from anti-bunching effect to super-bunching effect. Additionally, under the conditions of high environmental noise and low detection efficiency, higher-order coherence exhibits greater sensitivity to variations in optical field parameters than lower-order coherence. Furthermore, squeezed number states with multi-photon characteristics are less susceptible to disturbances from background noise, demonstrating stronger robustness.In addition, the variation characteristics of the high-order photon coherence function of the squeezed thermal state light field under the full time-delay conditions are investigated. The full time-delay high-order coherence $ {g^{(n)}} $ of the squeezed thermal state light field near the coherence time range $ {\tau _{{\text{STS}}}} $ is significantly higher than that of the classical thermal state light field. Even when a significant time delay is introduced into one of the optical paths, partial synchronization among photons can still maintain a certain correlation strength. Although unsynchronized photons lead to an overall reduction in coherence, the coherence is still higher than the theoretical predictions for thermal states under identical conditions.Based on the theoretical framework established in this work, future experiments may focus on adjusting the pump power, intracavity loss, and crystal temperature of optical parametric amplifiers to jointly control the squeezing degree and mean photon number, enabling stable generation of squeezed thermal states in different parameter regimes. Additionally, the precise measurement of higher-order coherence can be achieved using cascaded HBT detection systems with multiple inputs and high temporal resolution.In summary, by considering environmental noise, detection efficiency, and time delay, and by adjusting the average photon number, the number of squeezed photons, and the squeezing parameters, this method can prepare super-bunched squeezed thermal states and squeezed number states, whose higher-order coherence can be continuously adjusted over a wide range, thereby facilitating efficient quantum state preparation and manipulation, as well as high-resolution quantum imaging.
  • 图 1  压缩热态与压缩数态光场的高阶相干性探测原理图

    Fig. 1.  Principle diagram of high-order degree of coherence detection for squeezed thermal states and squeezed number state.

    图 2  相位无关压缩热态高阶相干函数$ {g^{(n)}} $随光场平均光子数$ \alpha $和压缩参数$ r $变化的超聚束结果 (a) $ {g^{(2)}} $; (b) $ {g^{(3)}} $; (c) $ {g^{(4)}} $; (d) $ {g^{(5)}} $

    Fig. 2.  Super-bunching results of higher-order coherence function $ {g^{(n)}} $in phase-independent squeezed thermal state varying with mean photon number $ \alpha $and squeezing parameter $ r $: (a) $ {g^{(2)}} $; (b) $ {g^{(3)}} $; (c) $ {g^{(4)}} $; (d) $ {g^{(5)}} $.

    图 3  相位无关压缩数态高阶相干函数$ {g^{(n)}} $随压缩光子数$ n $和压缩参数$ r $变化的结果 (a) $ {g^{(2)}} $; (b) $ {g^{(3)}} $; (c) $ {g^{(4)}} $; (d) $ {g^{(5)}} $

    Fig. 3.  Higher-order coherence function $ {g^{(n)}} $of phase-independent squeezed number state varying with photon number $ n $ before squeezing and squeezing parameter $ r $: (a) $ {g^{(2)}} $; (b) $ {g^{(3)}} $; (c) $ {g^{(4)}} $; (d) $ {g^{(5)}} $.

    图 4  压缩参数$ r $ = 1, 探测效率与背景噪声分别为($\eta $ = 1, $\gamma $ = 0), ($\eta $ = 0.5, $\gamma $ = 0.01)和($\eta $ = 0.5, $\gamma $ = 0.1)的情况下, 压缩热态光场高阶相干函数$ {g^{(n)}} $随平均光子数$ \alpha $的变化结果 (a) $ {g^{(2)}} $; (b) $ {g^{(3)}} $; (c) $ {g^{(4)}} $

    Fig. 4.  Higher-order coherence function $ {g^{(n)}} $of squeezed thermal state varying with mean photon number $ \alpha $when squeezing parameter $ r $ = 1, under detection efficiency and background noise conditions of ($\eta $ = 1, $\gamma $ = 0), ($\eta $ = 0.5, $\gamma $ = 0.01), and ($\eta $ = 0.5, $\gamma $ = 0.1): (a) $ {g^{(2)}} $; (b) $ {g^{(3)}} $; (c) $ {g^{(4)}} $.

    图 5  平均光子数$ \alpha $ = 0.5, 探测效率与背景噪声分别为($\eta $ = 1, $\gamma $ = 0), ($\eta $ = 0.5, $\gamma $ = 0.01)和($\eta $ = 0.5, $\gamma $ = 0.1)的情况下, 压缩热态光场高阶相干函数$ {g^{(n)}} $随压缩度$S$的变化结果 (a) $ {g^{(2)}} $; (b) $ {g^{(3)}} $; (c) $ {g^{(4)}} $

    Fig. 5.  Higher-order coherence function $ {g^{(n)}} $of squeezed thermal state varying with squeezing degree $S$when mean photon number $ \alpha $ = 0.5, under detection efficiency and background noise conditions of ($\eta $ = 1, $\gamma $ = 0), ($\eta $ = 0.5, $\gamma $ = 0.01), and ($\eta $ = 0.5, $\gamma $ = 0.1): (a) $ {g^{(2)}} $; (b) $ {g^{(3)}} $; (c) $ {g^{(4)}} $.

    图 6  实验条件下($\eta $= 0.5, $\gamma $= 0.01)和理想条件下($\eta $= 1, $\gamma $= 0), 压缩参数 (a) $ r $= 0.01, (b) $ r $= 0.1和(c) $ r $= 1时, 压缩数态高阶相干函数$ {g^{(n)}} $随压缩前数态光子数$ n $变化的结果

    Fig. 6.  Higher-order coherence function $ {g^{(n)}} $of squeezed number state varying with photon number $ n $without squeezing under experimental conditions ($\eta $= 0.5, $\gamma $= 0.01) and ideal conditions ($\eta $= 1, $\gamma $= 0), with squeezing parameter (a) $ r $= 0.01, (b) $ r $= 0.1, and (c) $ r $= 1.

    图 7  压缩参数$ r $= 0.1, 压缩光子数分别为 (a1)—(c1) $ n $ = 1, (a2)—(c2) $ n $= 5和(a3)—(c3) $ n $ = 15时, 压缩数态在不同背景噪声$\gamma $ = 0.01, 0.1, 0.2的情况下的高阶相干函数$ {g^{(n)}} $随探测效率$\eta $的变化结果

    Fig. 7.  Higher-order coherence function $ {g^{(n)}} $of squeezed number state varying with detection efficiency $\eta $at squeezing parameter $ r $ = 0.1, with squeezed photon number (a1)–(c1) $ n $ = 1, (a2)–(c2) $ n $ = 5, and (a3)–(c3) $ n $ = 15, under different background noises $\gamma $ = 0.01, 0.1, 0.2.

    图 8  背景噪声$\gamma $ = 0.01, 压缩光子数$ n $ = 1时, 压缩数态在不同探测效率$\eta $ = 0.1, 0.5, 1情况下的高阶相干函数$ {g^{(n)}} $随压缩度$S$的变化结果 (a) $ {g^{(2)}} $; (b) $ {g^{(3)}} $; (c) $ {g^{(4)}} $

    Fig. 8.  Higher-order coherence function $ {g^{(n)}} $of squeezed number state varying with squeezing degree $S$at background noise $\gamma $ = 0.01 and squeezed photon number $ n $ = 1, under different detection efficiencies $\eta $ = 0.1, 0.5, 1: (a) $ {g^{(2)}} $; (b) $ {g^{(3)}} $; (c) $ {g^{(4)}} $.

    图 9  平均光子数$ \alpha $ = 1, 压缩参数$ r $ = 0.2, 压缩热态光场全时延条件下的四阶相干性$ {g^{(4)}} $随延迟时间$ {t_3} $, $ {t_4} $的变化结果 (a) $ {t_1} $ = $ 0{\tau _{{\text{STS}}}} $; $ {t_2} $ = $ 0{\tau _{{\text{STS}}}} $; (b) $ {t_1} $ = $ 0{\tau _{{\text{STS}}}} $; $ {t_2} $ = $ 3{\tau _{{\text{STS}}}} $; (c) $ {t_1} $ = $ 0{\tau _{{\text{STS}}}} $; $ {t_2} $ = $ - 3{\tau _{{\text{STS}}}} $

    Fig. 9.  Fourth-order degree of coherence $ {g^{(4)}} $of squeezed thermal state varying with delay times $ {t_3} $, $ {t_4} $under full-delay conditions at mean photon number $ \alpha $ = 1 and squeezing parameter $ r $ = 0.2: (a) $ {t_1} $ = $ 0{\tau _{{\text{STS}}}} $;$ {t_2} $ = $ 0{\tau _{{\text{STS}}}} $; (b) $ {t_1} $ = $ 0{\tau _{{\text{STS}}}} $;$ {t_2} $ = $ 3{\tau _{{\text{STS}}}} $; (c) $ {t_1} $ = $ 0{\tau _{{\text{STS}}}} $; $ {t_2} $ = $ - 3{\tau _{{\text{STS}}}} $.

    图 10  压缩热态光场与热态光场全时延条件下的四阶相干性$ {g^{(4)}} $随延迟时间的变化结果

    Fig. 10.  Fourth-order coherence $ {g^{(4)}} $of squeezed thermal state and thermal state varying with delay time under full-delay conditions.

  • [1]

    彭堃墀, 黄茂全, 刘晶, 廉毅敏, 张天才, 于辰, 谢常德, 郭光灿 1993 物理学报 42 1079Google Scholar

    Peng K C, Huang M Q, Liu J, Lian Y M, Zhang T C, Yu C, Xie C D, Guo G C 1993 Acta Phys. Sin. 42 1079Google Scholar

    [2]

    Breitenbach G, Schiller S, Mlynek J 1997 Nature 387 471Google Scholar

    [3]

    李庆回, 姚文秀, 李番, 田龙, 王雅君, 郑耀辉 2021 物理学报 70 154203Google Scholar

    Li Q H, Yao W X, Li F, Tian L, Wang Y J, Zheng Y H 2021 Acta Phys. Sin. 70 154203Google Scholar

    [4]

    Bachor H, Ralph T C 2004 A Guide to Experiments in Quantum Optics (Berlin: Wiley) p232

    [5]

    Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409Google Scholar

    [6]

    Wu L A, Kimble H J, Hall J L, Wu H 1986 Phys. Rev. Lett. 57 2520Google Scholar

    [7]

    Vollmer C E, Baune C, Samblowski A, Eberle T, Händchen V, Fiurášek J, Schnabel R 2014 Phys. Rev. Lett. 112 73602Google Scholar

    [8]

    Kala V, Kopylov D, Marek P, Sharapova P 2025 Opt. Express 33 14000Google Scholar

    [9]

    Dorfman K, Liu S S, Lou Y B, Wei T X, Jing J T, Schlawin F, Mukamel S 2021 Proc. Natl. Acad. Sci. 118 e2105601118Google Scholar

    [10]

    Chembo Y K 2016 Phys. Rev. A 93 33820Google Scholar

    [11]

    Kim S, Marino A M 2018 Opt. Express 26 33366Google Scholar

    [12]

    Silverstone J W, Bonneau D, Ohira K, Suzuki N, Yoshida H, Iizuka N, Ezaki M, Natarajan C M, Tanner M G, Hadfield R H 2014 Nat. Photonics 8 104Google Scholar

    [13]

    Arrazola J M, Bergholm V, Brádler K, Bromley T R, Collins M J, Dhand I, Fumagalli A, Gerrits T, Goussev A, Helt L G 2021 Nature 591 54Google Scholar

    [14]

    Lu X, Li Q, Westly D A, Moille G, Singh A, Anant V, Srinivasan K 2019 Nat. Phys. 15 373Google Scholar

    [15]

    Porto C, Rusca D, Cialdi S, Crespi A, Osellame R, Tamascelli D, Olivares S, Paris M G 2018 J. Opt. Soc. Am. B 35 1596Google Scholar

    [16]

    Braunstein S L, Crouch D D 1991 Phys. Rev. A 43 330Google Scholar

    [17]

    Fanizza M, Rosati M, Skotiniotis M, Calsamiglia J, Giovannetti V 2021 Quantum 5 608Google Scholar

    [18]

    Deng X W, Hao S H, Tian C X, Su X L, Xie C D, Peng K C 2016 Appl. Phys. Lett. 108 081105Google Scholar

    [19]

    Yuen H P 2004 Quantum Squeezing (Vol. 27) (Berlin, Heidelberg: Springer Berlin Heidelberg) p227

    [20]

    Lin S Q, Li W, Chen Z W, Shen J W, Ge B H, Pei Y Z 2016 Nat. Commun. 7 10287Google Scholar

    [21]

    Lawrie B J, Lett P D, Marino A M, Pooser R C 2019 ACS Photonics 6 1307Google Scholar

    [22]

    Yang W H, Diao W T, Cai C X, Wu T, Wu K, Li Y, Li C, Duan C D, Leng H Y, Zi N K 2022 Chemosensors 11 18Google Scholar

    [23]

    Zander J 2021 Doctoral Dissertation (Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky

    [24]

    Zhang Y, Menotti M, Tan K, Vaidya V D, Mahler D H, Helt L G, Zatti L, Liscidini M, Morrison B, Vernon Z 2021 Nat. Commun. 12 2233Google Scholar

    [25]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [26]

    Dupays L, Chenu A 2021 Quantum 5 449Google Scholar

    [27]

    Kim M S, de Oliveira F A M, Knight P L 1989 Phys. Rev. A 40 2494Google Scholar

    [28]

    Marian P, Marian T A 1993 Phys. Rev. A 47 4474Google Scholar

    [29]

    Rashid M, Tufarelli T, Bateman J, Vovrosh J, Hempston D, Kim M S, Ulbricht H 2016 Phys. Rev. Lett. 117 273601Google Scholar

    [30]

    Albano L, Mundarain D F, Stephany J 2002 J. Opt. B: Quantum Semiclassical Opt. 4 352Google Scholar

    [31]

    Marian P 1991 Phys. Rev. A 44 3325Google Scholar

    [32]

    Liu R F, Fang A P, Zhou Y, Zhang P, Gao S Y, Li H R, Gao H, Li F L 2016 Phys. Rev. A 93 13822Google Scholar

    [33]

    Tan Q S, Liao J Q, Wang X, Nori F 2014 Phys. Rev. A 89 53822Google Scholar

    [34]

    Guo Y Q, Peng C S, Ji Y L, Li P, Guo Y Y, Guo X M 2018 Opt. Express 26 5991Google Scholar

    [35]

    Guo Y Q, Zhang H J, Guo X M, Zhang Y C, Zhang T C 2022 Opt. Express 30 8461Google Scholar

    [36]

    Guo Y Q, Li G, Zhang Y F, Zhang P F, Wang J M, Zhang T C 2012 Sci. China Phys. , Mech. Astron. 55 1523Google Scholar

    [37]

    Brown R H, Twiss R Q 1956 Nature 177 27Google Scholar

    [38]

    郭龑强, 王李静, 王宇, 房鑫, 赵彤, 郭晓敏 2020 物理学报 69 105

    Guo Y Q, Wang L J, Wang Y, Fang X, Zhao T, Guo X M Acta Phys. Sin. 2020 69 105

    [39]

    Liu Q, Luo K H, Chen X H, Wu L A 2010 Chin. Phys. B 19 94211Google Scholar

    [40]

    Liu Y C, Kuang L M 2011 Phys. Rev. A 83 53808Google Scholar

    [41]

    Guo Y Q, Zhang H J, Guo X M, Zhang Y C, Zhang T C 2022 Opt. Express 30 8461Google Scholar

    [42]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge university press

    [43]

    张浩杰, 郭龑强, 郭晓敏, 张健飞, 左冠华, 张玉驰, 张天才 2022 物理学报 71 194202Google Scholar

    Zhang H J, Guo Y Q, Guo X M, Zhang J F, Zuo G H, Zhang Y C, Zhang T C 2022 Acta Phys. Sin. 71 194202Google Scholar

    [44]

    Yu J, Qin Y, Qin J L, Wang H, Yan Z H, Jia X J, Peng K C 2020 Phys. Rev. Appl. 13 24037Google Scholar

    [45]

    Vignat C 2012 Stat. Probab. Lett. 82 67Google Scholar

  • [1] 蔚娟, 张岩, 吴银花, 杨文海, 闫智辉, 贾晓军. 双模压缩态量子相干性演化的实验研究. 物理学报, doi: 10.7498/aps.72.20221923
    [2] 张浩杰, 郭龑强, 郭晓敏, 张健飞, 左冠华, 张玉驰, 张天才. 相位可变压缩相干态的高阶光子反聚束效应. 物理学报, doi: 10.7498/aps.71.20220574
    [3] 赵晓娜, 庄煜昕, 汪中. 相干布居数拍频信号与基态超精细子能级相干性关系的研究. 物理学报, doi: 10.7498/aps.64.134203
    [4] 卢道明. 三参数双模压缩粒子数态的量子特性. 物理学报, doi: 10.7498/aps.61.210302
    [5] 张东, 张磊, 史久林, 石锦卫, 弓文平, 刘大禾. 受激布里渊散射的线宽压缩及时间相干性. 物理学报, doi: 10.7498/aps.61.064212
    [6] 吕菁芬, 马善钧. 光子扣除(增加)压缩真空态与压缩猫态的保真度. 物理学报, doi: 10.7498/aps.60.080301
    [7] 徐学翔, 袁洪春, 胡利云. 广义压缩粒子数态的非经典性质及其退相干. 物理学报, doi: 10.7498/aps.59.4661
    [8] 贾晓军, 苏晓龙, 潘 庆, 谢常德, 彭堃墀. 具有经典相干性的两组EPR纠缠态光场的实验产生. 物理学报, doi: 10.7498/aps.54.2717
    [9] 董传华. 原子相干态中角动量的高阶涨落及高阶压缩. 物理学报, doi: 10.7498/aps.50.1058
    [10] 姚春梅, 郭光灿. 压缩相干态腔场的类自旋GHZ态的制备. 物理学报, doi: 10.7498/aps.50.59
    [11] 汪仲清. 奇偶q-变形相干态的高阶压缩效应. 物理学报, doi: 10.7498/aps.50.690
    [12] 郝三如, 王麓雅. 用外加驱动场压缩有热槽相互作用二态量子系统的退相干性. 物理学报, doi: 10.7498/aps.49.610
    [13] 董传华. 热噪声的相干态和压缩态中的高阶涨落. 物理学报, doi: 10.7498/aps.47.1989
    [14] 冯勋立, 何林生, 柳永亮. 压缩真空态光场中两能级原子的双光子荧光的反聚束效应. 物理学报, doi: 10.7498/aps.46.1718
    [15] 于肇贤, 王继锁, 刘业厚. 非简谐振子广义奇偶相干态的高阶压缩效应及反聚束效应. 物理学报, doi: 10.7498/aps.46.1693
    [16] 许晶波, 刘宜昌, 高孝纯. 二次型含时间的谐振子系统的压缩态和压缩相干态. 物理学报, doi: 10.7498/aps.44.216
    [17] 吴兴龙. 压缩粒子数态中振幅k次幂的压缩效应. 物理学报, doi: 10.7498/aps.43.1433
    [18] 董传华. 混合迭加态的高阶压缩. 物理学报, doi: 10.7498/aps.41.428
    [19] 夏云杰, 李洪珍, 郭光灿. 奇偶相干态的高阶压缩及其准概率分布函数. 物理学报, doi: 10.7498/aps.40.386
    [20] 郭光灿, 柴金华. 光泵三能级原子体系产生光子数压缩态. 物理学报, doi: 10.7498/aps.40.912
计量
  • 文章访问数:  496
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-26
  • 修回日期:  2025-04-23
  • 上网日期:  2025-05-10

/

返回文章
返回