-
Cavity quantum electrodynamics (QED) provides a fundamental platform for implementing lightmatter interactions at the single-particle level, having been extensively investigated in fundamental physics and quantum information. Recent advances in parametric squeezing techniques have demonstrated remarkable capabilities for exponentially enhancing coherent coupling between an atom and a cavity. However, the full extent of manipulating quantum optical phenomena using these techniques still requires further exploration. This work systematically investigates the effects of optical parametric amplification on single-photon excited atom-cavity systems within a parametric driven cavity. In the proposed model, optical parametric amplification converts the driving photons into a squeezed cavity mode, which can enhance the atom-cavity interaction to the strong coupling region. Through analytical derivation of atomic and cavity radiation spectra, we demonstrate that the optical parametric amplification can lead to the splitting of atomic radiation spectra, but produces negligible effects on spectral intensity. Conversely, the cavity transmission spectrum exhibits both pronounced splitting and nonlinear intensity amplification. Notably, when driving field intensity approaches critical region, the intensity of the cavity radiation spectrum can be significantly enhanced. The underlying mechanism originates from parametric driving amplification, which converts the driving light into a squeezed cavity mode. When this squeezed mode is mapped back to the original mode of the cavity through Bogoliubov squeezing transformation, the pump photons in the squeezed cavity mode are converted into the radiation spectrum of the cavity, which leads to the amplification of the cavity radiation spectrum. This parametric enhancement protocol not only deepens fundamental understanding of engineered light-matter interactions but also establishes a practical framework for improving single-photon detection sensitivity in cavity-based quantum systems. These findings hold promising implications for quantum sensing and information processing applications.
-
[1] Nimmrichter S, Hornberger K 2013 Phys. Rev. Lett. 110160403
[2] Horodecki R, Horodecki P, Horodecki M, et al 2009 Rev. Mod. Phys. 81865
[3] Shan C J, Xia Y J 2006 Acta Phys. Sin. 551585(in Chinese) [单传家, 夏云杰2006物理学报551585]
[4] Wang Q, Chen W, Xavier G, et al 2008 Phys. Rev. Lett. 100090501
[5] Motes K R, Olson J P, Rabeaux E J, et al 2015 Phys. Rev. Lett. 114170802
[6] Petrosyan D, Fleischhauer M 2008 Phys. Rev. Lett. 100170501
[7] Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73565
[8] Knill E, Laflamme R, Milburn G J 2001 Nature 40946
[9] Peres A, Terno D R 2004 Rev. Mod. Phys. 7693
[10] Charaev I, Bandurin D A, Bollinger A T, et al 2023 Nat. Nanotechnol 18343
[11] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge University Press)
[12] Jané E, Plenio M B, Jonathan D 2002 Phys. Rev. A. 65050302(R)
[13] Ye J, Vernooy D W, Kimble H J 1999 Phys. Rev. Lett. 834987
[14] Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77633
[15] Giovannetti V, Lloyd S, Maccone L2011 Nature Photon 5222
[16] Bhargav A M, Rakshit R K, Das S, et al 2021 Adv. Quantum Technol 42100008
[17] Hadfield R H 2009 Nat. Photonics 3696–705
[18] Valivarthi R, Puigibert M, Zhou Q, et al 2016 Nature Photon 10676
[19] Zhao Q Y, Zhu D, Calandri N, et al 2017 Nature Photon 11247
[20] Poon C S, Langri D S, Rinehart B 2022 Biomed. Opt. Express 131344
[21] Schuster D I, Bishop L S, Chuang I L 2011 Phys. Rev. A. 83012311
[22] Weiher K, Agudelo E, Bohmann M 2019 Phys. Rev. A. 100043812
[23] Guo M D, Li H F, Wang F L, et al 2023 Opt. Lett. 484037
[24] Carmele A, Kabuss J, Schulze F, Reitzenstein S, Knorr A 2013 Phys. Rev. Lett. 110013601
[25] Houdré R, Weisbuch C, Stanley R P, Oesterle U, Ilegems M 2000 Phys. Rev. Lett. 852793
[26] Spillane S M, Kippenberg T J, Painter O J, Vahala K J 2003 Phys. Rev. Lett. 91043902
[27] Ritsch H, Domokos P, Brennecke F, et al 2013 Rev. Mod. Phys. 85553
[28] Guo M D, Li H F, Li N, et al 2023 Phys. Rev. A 107033704
[29] Garziano L, Macrì V, Stassi R, et al 2016 Phys. Rev. Lett. 117043601
[30] Kockum F A, Miranowicz A, Liberato S D, et al 2019 Nat. Rev. Phys. 119
[31] Xiang Z L, Ashhab S, You J Q, et al 2013 Rev. Mod. Phys. 85623
[32] Liu Y C, Luan X S, Li H K, et al 2014 Phys. Rev. Lett. 112213602
[33] Lü X Y, Wu Y, Johansson J R, et al 2015 Phys. Rev. Lett. 114093602
[34] Qin W, Miranowicz A, Li P B, et al 2018 Phys. Rev. Lett. 120093601
[35] Leroux C, Govia L C G, and Clerk A A 2018 Phys. Rev. Lett. 120093602
[36] Mollow B R 1969 Phys. Rev. 1881969
[37] Zhou C X, He Z, Cao B F, et al 2021 J. Opt. Soc. Am. B 381359
[38] Muñoz C S, Jaksch D 2021 Phys. Rev. Lett. 127183603
[39] Wang Y, Li C, Sampuli E M, et al 2019 Phys. Rev. A 99023833
[40] Villas-Bôas C J, de Almeida N G, Serra R M, et al 2003 Phys. Rev. A 68061801(R)
[41] de Almeida N G, Serra R M, Villas-Bôas C J, et al 2004 Phys. Rev. A 69035802
[42] Law C K, Zhu S Y, Zubairy M S 1995 Phys. Rev. A 524095
[43] Xia K Y, Johnsson M, Knight P L, et al 2016 Phys. Rev. Lett. 116023601
[44] Serikawa T, Yoshikawa J, Makino K, et al 2016 Opt. Express 2428383
[45] Vahlbruch H, Mehmet M, Danzmann K, et al 2016 Phys. Rev. Lett. 117110801
计量
- 文章访问数: 22
- PDF下载量: 2
- 被引次数: 0