搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

参量驱动腔中的辐射特性研究

尚雪 曹斌芳 郭苗迪 贺志 周春晓

引用本文:
Citation:

参量驱动腔中的辐射特性研究

尚雪, 曹斌芳, 郭苗迪, 贺志, 周春晓

Investigation of radiation characteristics in a parametrically driven cavity

Shang Xue, Cao Binfang, Guo Miaodi, He Zhi, Zhou Chunxiao
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文基于单光子激发的原子-腔系统,通过光学参量放大过程对腔模进行压缩调控,从而改变原子和腔模相互作用,并以此探究腔模压缩对单光子辐射谱的影响。研究结果表明,光学参量放大过程对原子辐射谱线型具有明显影响,但对光谱强度的影响较小。相比之下,该机制不仅影响了腔辐射谱线型,还能显著增强光谱强度。本研究可以提高腔中弱信号的探测能力,为单光子的检测提供一种新思路。
    Cavity quantum electrodynamics (QED) provides a fundamental platform for implementing lightmatter interactions at the single-particle level, having been extensively investigated in fundamental physics and quantum information. Recent advances in parametric squeezing techniques have demonstrated remarkable capabilities for exponentially enhancing coherent coupling between an atom and a cavity. However, the full extent of manipulating quantum optical phenomena using these techniques still requires further exploration. This work systematically investigates the effects of optical parametric amplification on single-photon excited atom-cavity systems within a parametric driven cavity. In the proposed model, optical parametric amplification converts the driving photons into a squeezed cavity mode, which can enhance the atom-cavity interaction to the strong coupling region. Through analytical derivation of atomic and cavity radiation spectra, we demonstrate that the optical parametric amplification can lead to the splitting of atomic radiation spectra, but produces negligible effects on spectral intensity. Conversely, the cavity transmission spectrum exhibits both pronounced splitting and nonlinear intensity amplification. Notably, when driving field intensity approaches critical region, the intensity of the cavity radiation spectrum can be significantly enhanced. The underlying mechanism originates from parametric driving amplification, which converts the driving light into a squeezed cavity mode. When this squeezed mode is mapped back to the original mode of the cavity through Bogoliubov squeezing transformation, the pump photons in the squeezed cavity mode are converted into the radiation spectrum of the cavity, which leads to the amplification of the cavity radiation spectrum. This parametric enhancement protocol not only deepens fundamental understanding of engineered light-matter interactions but also establishes a practical framework for improving single-photon detection sensitivity in cavity-based quantum systems. These findings hold promising implications for quantum sensing and information processing applications.
  • [1]

    Nimmrichter S, Hornberger K 2013 Phys. Rev. Lett. 110160403

    [2]

    Horodecki R, Horodecki P, Horodecki M, et al 2009 Rev. Mod. Phys. 81865

    [3]

    Shan C J, Xia Y J 2006 Acta Phys. Sin. 551585(in Chinese) [单传家, 夏云杰2006物理学报551585]

    [4]

    Wang Q, Chen W, Xavier G, et al 2008 Phys. Rev. Lett. 100090501

    [5]

    Motes K R, Olson J P, Rabeaux E J, et al 2015 Phys. Rev. Lett. 114170802

    [6]

    Petrosyan D, Fleischhauer M 2008 Phys. Rev. Lett. 100170501

    [7]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73565

    [8]

    Knill E, Laflamme R, Milburn G J 2001 Nature 40946

    [9]

    Peres A, Terno D R 2004 Rev. Mod. Phys. 7693

    [10]

    Charaev I, Bandurin D A, Bollinger A T, et al 2023 Nat. Nanotechnol 18343

    [11]

    Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge University Press)

    [12]

    Jané E, Plenio M B, Jonathan D 2002 Phys. Rev. A. 65050302(R)

    [13]

    Ye J, Vernooy D W, Kimble H J 1999 Phys. Rev. Lett. 834987

    [14]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77633

    [15]

    Giovannetti V, Lloyd S, Maccone L2011 Nature Photon 5222

    [16]

    Bhargav A M, Rakshit R K, Das S, et al 2021 Adv. Quantum Technol 42100008

    [17]

    Hadfield R H 2009 Nat. Photonics 3696–705

    [18]

    Valivarthi R, Puigibert M, Zhou Q, et al 2016 Nature Photon 10676

    [19]

    Zhao Q Y, Zhu D, Calandri N, et al 2017 Nature Photon 11247

    [20]

    Poon C S, Langri D S, Rinehart B 2022 Biomed. Opt. Express 131344

    [21]

    Schuster D I, Bishop L S, Chuang I L 2011 Phys. Rev. A. 83012311

    [22]

    Weiher K, Agudelo E, Bohmann M 2019 Phys. Rev. A. 100043812

    [23]

    Guo M D, Li H F, Wang F L, et al 2023 Opt. Lett. 484037

    [24]

    Carmele A, Kabuss J, Schulze F, Reitzenstein S, Knorr A 2013 Phys. Rev. Lett. 110013601

    [25]

    Houdré R, Weisbuch C, Stanley R P, Oesterle U, Ilegems M 2000 Phys. Rev. Lett. 852793

    [26]

    Spillane S M, Kippenberg T J, Painter O J, Vahala K J 2003 Phys. Rev. Lett. 91043902

    [27]

    Ritsch H, Domokos P, Brennecke F, et al 2013 Rev. Mod. Phys. 85553

    [28]

    Guo M D, Li H F, Li N, et al 2023 Phys. Rev. A 107033704

    [29]

    Garziano L, Macrì V, Stassi R, et al 2016 Phys. Rev. Lett. 117043601

    [30]

    Kockum F A, Miranowicz A, Liberato S D, et al 2019 Nat. Rev. Phys. 119

    [31]

    Xiang Z L, Ashhab S, You J Q, et al 2013 Rev. Mod. Phys. 85623

    [32]

    Liu Y C, Luan X S, Li H K, et al 2014 Phys. Rev. Lett. 112213602

    [33]

    Lü X Y, Wu Y, Johansson J R, et al 2015 Phys. Rev. Lett. 114093602

    [34]

    Qin W, Miranowicz A, Li P B, et al 2018 Phys. Rev. Lett. 120093601

    [35]

    Leroux C, Govia L C G, and Clerk A A 2018 Phys. Rev. Lett. 120093602

    [36]

    Mollow B R 1969 Phys. Rev. 1881969

    [37]

    Zhou C X, He Z, Cao B F, et al 2021 J. Opt. Soc. Am. B 381359

    [38]

    Muñoz C S, Jaksch D 2021 Phys. Rev. Lett. 127183603

    [39]

    Wang Y, Li C, Sampuli E M, et al 2019 Phys. Rev. A 99023833

    [40]

    Villas-Bôas C J, de Almeida N G, Serra R M, et al 2003 Phys. Rev. A 68061801(R)

    [41]

    de Almeida N G, Serra R M, Villas-Bôas C J, et al 2004 Phys. Rev. A 69035802

    [42]

    Law C K, Zhu S Y, Zubairy M S 1995 Phys. Rev. A 524095

    [43]

    Xia K Y, Johnsson M, Knight P L, et al 2016 Phys. Rev. Lett. 116023601

    [44]

    Serikawa T, Yoshikawa J, Makino K, et al 2016 Opt. Express 2428383

    [45]

    Vahlbruch H, Mehmet M, Danzmann K, et al 2016 Phys. Rev. Lett. 117110801

  • [1] 杨春林. 散斑场的随机波数及其参量非线性效应. 物理学报, doi: 10.7498/aps.73.20231235
    [2] 陈海霞, 林书玉. 非线性声场中的参量激发. 物理学报, doi: 10.7498/aps.70.20202093
    [3] 刘硕, 白建东, 王杰英, 何军, 王军民. 铯原子nP3/2 (n = 70—94)里德伯态的紫外单光子激发及量子亏损测量. 物理学报, doi: 10.7498/aps.68.20182283
    [4] 王红胜, 纪道刚, 高艳磊, 张阳, 陈开颜, 陈军广, 吴令安, 王永仲. 基于时间相关单光子计数技术的密码芯片光辐射分析. 物理学报, doi: 10.7498/aps.64.058901
    [5] 董云松, 杨家敏, 张璐, 尚万里. 低密度泡沫金激光-X射线转换特性模拟研究. 物理学报, doi: 10.7498/aps.62.075203
    [6] 李园, 窦秀明, 常秀英, 倪海桥, 牛智川, 孙宝权. InAs 单量子点中级联辐射光子的关联测量. 物理学报, doi: 10.7498/aps.60.017804
    [7] 徐勋卫, 刘念华. 双带型光子晶体中双V型四能级原子自发辐射谱中的黑线研究. 物理学报, doi: 10.7498/aps.59.3236
    [8] 鄢嫣, 魏巧, 李高翔. 非线性光子晶体中原子辐射光场的非经典性质. 物理学报, doi: 10.7498/aps.59.2505
    [9] 李建芬, 李农, 刘宇平, 甘轶. 利用单驱动变量实现一类混沌系统的线性和非线性广义同步. 物理学报, doi: 10.7498/aps.58.779
    [10] 刘卫华, 宋啸中, 王屹山, 刘红军, 赵 卫, 刘雪明, 彭钦军, 许祖彦. 飞秒激光脉冲在高非线性光子晶体光纤中产生超连续谱的实验研究. 物理学报, doi: 10.7498/aps.57.917
    [11] 贾亚青, 闫培光, 吕可诚, 张铁群, 朱晓农. 高非线性光子晶体光纤中飞秒脉冲的传输特性和超连续谱产生机制的实验研究及模拟分析. 物理学报, doi: 10.7498/aps.55.1809
    [12] 黄仙山, 谢双媛, 羊亚平. 各向异性光子晶体中Λ型原子的自发辐射性质. 物理学报, doi: 10.7498/aps.55.696
    [13] 成纯富, 王晓方, 鲁 波. 飞秒光脉冲在光子晶体光纤中的非线性传输和超连续谱产生. 物理学报, doi: 10.7498/aps.53.1826
    [14] 史庆藩, 闫学群. 非线性激发的磁激子对的振荡特性. 物理学报, doi: 10.7498/aps.52.225
    [15] 卫青, 王奇, 施解龙, 陈园园. 孤子和辐射场的非线性相互作用. 物理学报, doi: 10.7498/aps.51.99
    [16] 冯健, 王继锁, 高云峰, 詹明生. 光场及原子-光场耦合的非线性对腔内原子辐射谱的影响. 物理学报, doi: 10.7498/aps.50.1279
    [17] 郭 红, 李高翔, 彭金生. 由灰体辐射场驱动的二能级原子的发射谱. 物理学报, doi: 10.7498/aps.49.887
    [18] 张培林. 双光子激发钾5d2DJ态的光波混频和参量过程. 物理学报, doi: 10.7498/aps.34.1040
    [19] 冯若, 龚秀芬, 朱正亚, 石涛. 生物媒质中非线性声学参量B/A的研究. 物理学报, doi: 10.7498/aps.33.1282
    [20] 吴钦义, 张和琪. 直流电弧等离子区中谱线热激发各基本参量的径向分布. 物理学报, doi: 10.7498/aps.15.210
计量
  • 文章访问数:  22
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-10

/

返回文章
返回